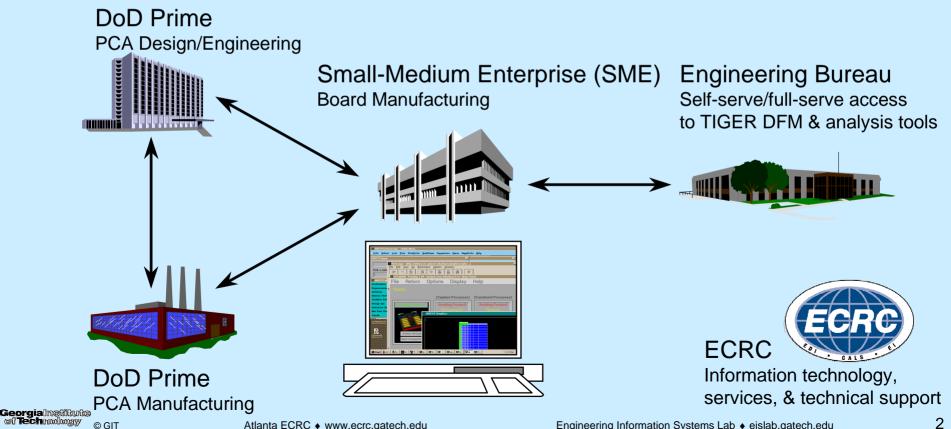

Product Data-Driven Analysis in a Missile Supply Chain

http://eislab.gatech.edu/projects/proam/

Project Demonstration

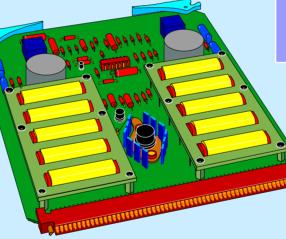

June 17-18, 1999 Manufacturing Research Center Georgia Tech Atlanta

First Generation (2/97): **TIGER Tools & Techniques**

Advanced engineering collaboration among DoD Primes & SMEs, using standards-based tools (TDI/EDI & STEP), facilitated by ECRC technology & services

STEP AP 210 PWA/B Design Information

Physical


- Component Placement
- Bare Board Geometry
- Layout items
- Layers non-planar, conductive & non-conductive
- Material product

Geometry

- Geometrically Bounded 2-D Shape
- Wireframe with Topology
- Advanced BREP Solids
- Constructive Solid Geometry

- Functional
- Packaged

Requirements

- Design
- Allocation
- Constraints
- Interface

Part

- Functionality
- Termination
- Shape 2D, 3D
- Single Level Decomposition
- Material Product
- Characteristics

Configuration Mgmt

- Identification
- Authority
- Effectivity
- Control
- Requirement Traceability
- Analytical Model
- Document References

Technology

- Fabrication Design Rules
- Product Design Rules

ProAM Project Highlights

- Title: Product Data-Driven Analysis in a Missile Supply Chain (ProAM)
- Sponsor: National ECRC Program

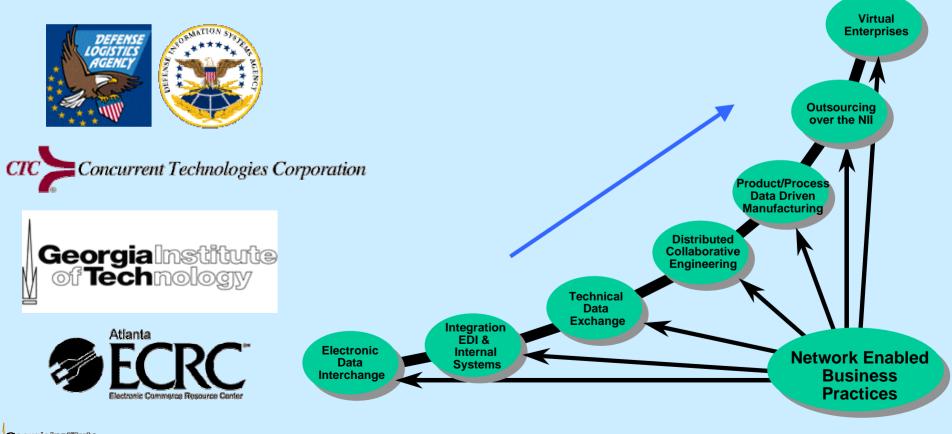
From DoD DLA/DISA Joint Electronic Commerce Program Office (JECPO), via subcontract under Concurrent Technologies Corp. (CTC)

Technical Team: AMCOM - Stakeholder, Atlanta ECRC/Georgia Tech (lead) SMEs: Circuit Express (Tempe), S3 (Huntsville)

Duration: 8/97-6/99

Focus:

- X-Analysis Integration (XAI) techniques
 - Engineering Service Bureau (ESB) paradigm
 - Electronics domain (PWA/Bs) STEP AP210, etc.

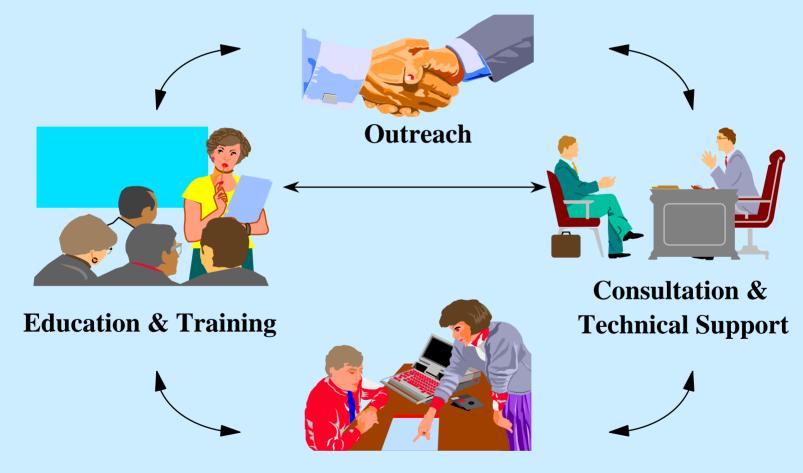

Extensions:

- **ons:** Transform demo ESB into SME commercial pilot
 - Release next-generation XAI toolkit

Electronic Commerce Resource Centers (ECRCs)

Provide assistance to government organizations and small to-medium-sized enterprises (SMEs) by introducing electronic commerce into their business practices

Regional ECRCs



ECRC Core Functions

Technology Development

Georgialnstitute of Technology © GIT

Atlanta ECRC

www.ecrc.gatech.edu

Georgia Instituto

© GIT

- Getting Started with Electronic Commerce
- Business Opportunities With the DoD Through EDI
- Electronic Funds Transfer
- Internet Basics for Small & Medium-sized Companies
- Technical Data Exchange
- Legacy Data Management
- STEP and Product Data Modeling

Contacts for ECRC Services &Course Schedules: Atlanta ECRC: www.ecrc.gatech.edu, ecrcinfo@ecrc.gatech.edu, 800-894-8042 National ECRC: www.ecrc.ctc.com

Atlanta ECRC
 www.ecrc.gatech.edu

Engineering Information Systems Lab + eislab.gatech.edu

Outline

Welcome & Background

Project Overview

- Team
- Motivation & Objectives
- Tasks
- Deliverable Highlights

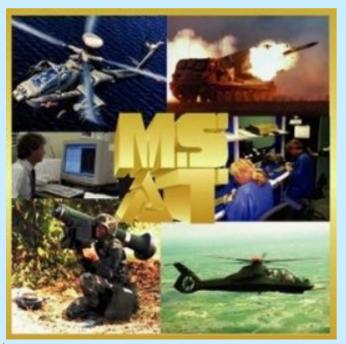
Break

SME ProAM Experiences

- PWA/B Designer & Fabricator Perspective Phillip Spann (S3)
- PWB Fabricator Perspective Jake Roberts (Circuit Express)

Wrap-Up Discussion - All Overview of Afternoon Sessions

ProAM Technical Team


AMCOM Mfg. Science & Technology Group Mission & Objective

http://www.redstone.army.mil/mrdec/mst/

MISSION - Advance the state-of-the-art in manufacturing technologies required for production of Army missile and air vehicle systems

OBJECTIVE - Development and implementation of advanced manufacturing technologies required to assure both the availability and affordability of defense materiel through:

- Early identification of new technology insertions into existing / future systems
- Identification of manufacturing risks / unknowns associated with new technology applications
- Investments in research, development, and implementation of advanced manufacturing capabilities

GeorgiaInstitute of **Tech**nology © GIT

- Electronics Fabrication and Analysis Lab to support AMCOM Research and Development
 - PWB Design, Fabrication, Assembly & Test
 - Cable and Wire Harness Fabrication, Assembly & Test
 - PSPICE Circuit Analysis

AMCOM MS&T Role in ProAM

Army Aviation & Missile Command (AMCOM) Manufacturing Science & Technology group helped provide <u>Customer Interface:</u>

- PWB SME's
- Rapid Prototyping Shops

As Stakeholder, MS&T group provided Technical Oversight for DLA and CTC:

Performance and Schedule

- Daron Holderfield
- Jeff Carr

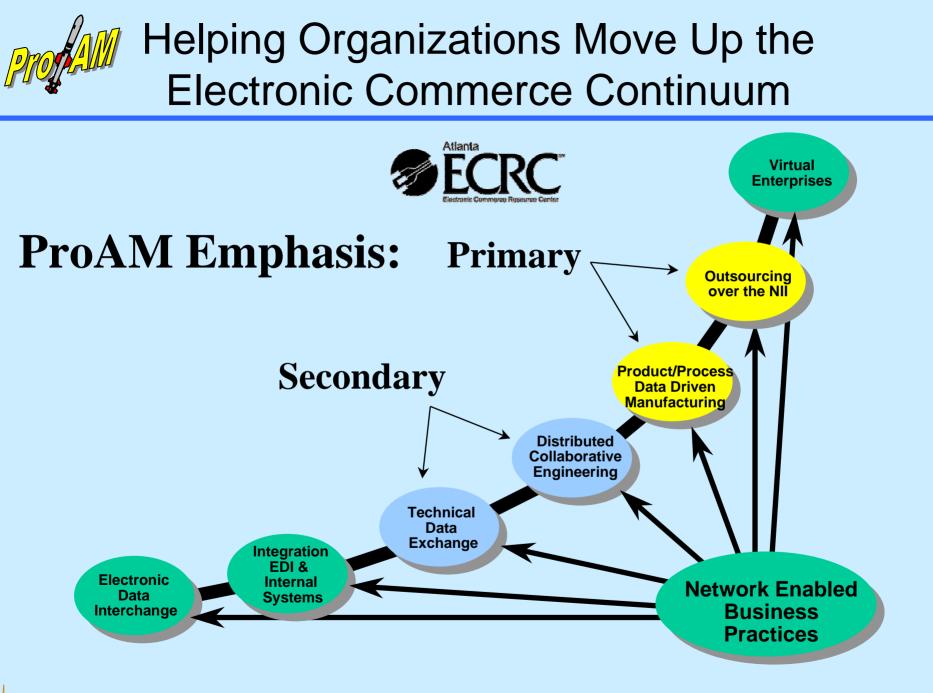
- **Technical Oversight**
- **Requirements Planning**

• Jim Bradt


Requirements Planning

- Engineering Information Systems (EIS) Lab
 - Applied Research ↔ Industry Projects
 - Graduate Students, University Courses
- Atlanta Electronic Commerce Resource Center (ECRC)
 - Helping DoD Vendors Move Up the Electronic Commerce Continuum
 - Training, Outreach, Technical Support & Services
- Center for Information Technology Insertion (CITI)
 - Industrial-Strength Information Technology Solutions

Engineering Information Technology Research, Education, & Insertion



National Program

Provide assistance to government organizations and small-to-medium-sized enterprises (SMEs) by introducing electronic commerce into their business practices

Atlanta ECRC Role in ProAM

- Program management & National ECRC interface
- Engineering service bureau infrastructure
- Information technology support for SMEs (Small-Medium Enterprises)
- Technology transfer to SMEs

Georgia Tech EIS Lab Research Thrusts

- Analysis Integration
 - Design-Analysis Integration (DAI)
 - X-Analysis Integration (XAI)
 - Modular parametric finite element modeling
 - Optimization
- Engineering Information Technology
 - Internet-based engineering service bureaus (ESBs)
 - Engineering change management
 - Product modeling
 - Engineering information standards (e.g., STEP)
- Parallel Processing

Applications

Aerospace, Automotive, Electronic Packaging, etc.

GeorgiaInstitute of **Tech**nology © GIT

Atlanta ECRC www.ecrc.gatech.edu

Engineering Information Systems Lab
 eislab.gatech.edu

Example EIS Lab Projects

- Team Integrated Electronic Response (TIGER)
 - Sponsor: Defense Advanced Research Prog. Admin. (DARPA) (SCRA subcontract)
 - Period: 9/95-3/97
- Subsystem Interface Integration (SII)
 - Sponsor: NASA (Lockheed Martin subcontract)
 - Period: 12/97-5/98
- Product Data-Driven Analysis in the Life Cycle Support Process
 - Sponsor: Wright Patterson Air Force Base (WPAFB)
 - Period: 12/97-6/98
- Product Data-Driven Analysis in a Missile Supply Chain (ProAM)
 - Sponsor: Defense Logistics Agency National ECRC Program
 - Stakeholder: U. S. Army Missile Command (AMCOM)
 - Period: 8/97-6/99
- Design Analysis Associativity Technology for PSI (PSI-DANTE)
 - Sponsor: Boeing
 - Period: 9/97-12/98 (Phase 1)
- Design Analysis Integration Research for Electronic Packaging
 - Sponsor: Shinko Electric
 - Period: 1/99-12/99 (Phase 1)

CALS Technology Center Primary ProAM Technical Team

- Bob Fulton Atlanta ECRC program mgt.
- Donald Koo Warpage tool and FEA R&D
- Russell Peak Program mgt., overall R&D
- Andy Scholand ESB, CORBA, GenCAM/GenX, and electronic packaging R&D; SME interface
- Diego Tamburini Product Model and STEP R&D
- Sai Zeng Layup tool and STEP R&D
- Miyako Wilson XAI toolkit and STEP R&D

AMCOM Supply Chain SME: Systems Studies & Simulation, Inc. (S3)

- Small Business (75+ Employees)
- Minority And Woman-Owned
- Alabama Corp. Established In 1993
- Provides Technical & Program Mgt. Services: DoD, NASA, U.S. Army, Intelligence Community, ...

ITAM STUDIUS & SIMULATION, Inc Providing Technical Products and Services to the Defense, Space, and the Intelligence communities

Supports AMCOM MS&T electronics lab

- Analyze Requirements
- Validate designs via breadboard
- Design concepts & author specs
- Generate mechanical designs
- Develop electrical schematics
- Design PWB/As & electronic assy's
- Develop & conduct acceptance tests
- ProAM Team & Roles
 - Phillip Spann Test case data & background, ProAM tool usage, Feedback on PWA/B designer needs
 - Tim Thorton Contracting/Mgt. Point of Contact

AMCOM Supply Chain SME: Circuit Express, Inc.

- Small business (35 employees)
- Established in 1987
- Arizona corporation
- Printed circuit board fabricator
 - Military and commercial
- Quick-turn manufacturer (same day +)

Circuit Express ProAM Context

Supplies PWBs to AMCOM & Missile Primes

- "Representative" high-tech SME fabricator
- Frequent need for tools: layup design & evaluation

ProAM Team & Roles

- Jake Roberts Test case data & background, ProAM tool usage, Feedback on fabricator needs
- Terry Bice Same

Outline

Welcome & Background

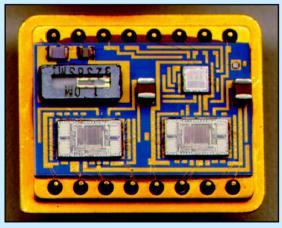
Project Overview

- Team
- Motivation & Objectives
- Tasks
- Deliverable Highlights

Break

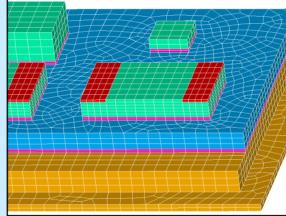
SME ProAM Experiences

- PWA/B Designer & Fabricator Perspective Phillip Spann (S3)
- PWB Fabricator Perspective Jake Roberts (Circuit Express)

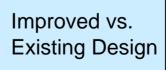

Wrap-Up Discussion - All Overview of Afternoon Sessions

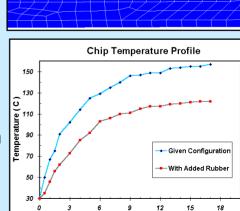
Why Electronics? Why Analysis of Physical Behavior?

Electronics


\$300B+ industry; Critical technology

Need for Predictive Analysis




Missile MCM with Overheating Problems

- Costly delays
- Serious consequences
 High improvement potential

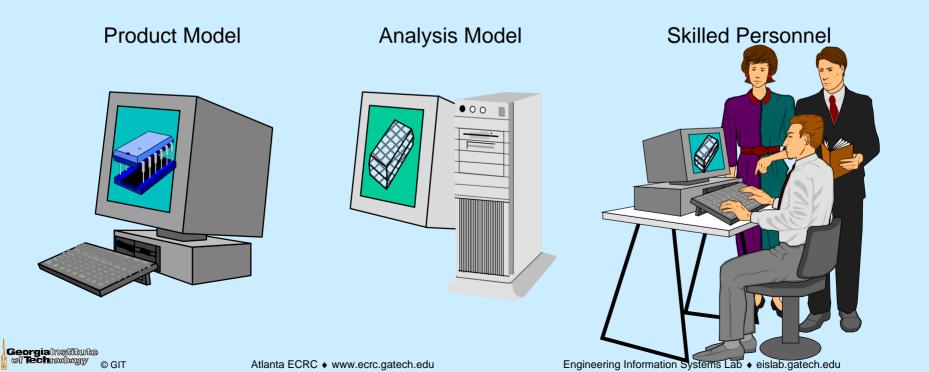
Finite Element Analysis

Time (T)

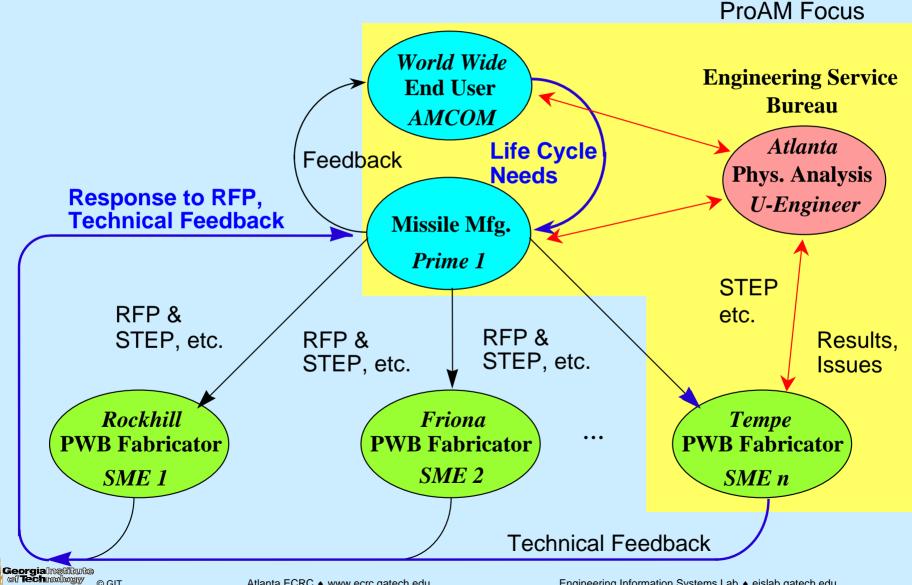
Atlanta ECRC

www.ecrc.gatech.edu

Why Do SME Manufacturers Need Analysis?


- Typically niche-experts
 - Precise mfg. process knowledge
 - Specialized product <u>design</u> knowledge (ex. PWB laminates)
- SME analysis needs
 - Product improvements (DFM)
 - Mfg. process troubleshooting
 - Mfg. process optimization
- More accurate data \rightarrow Better analysis
- Bottom line drivers:

Higher Yields, Lower Cost, Better Quality, Fewer Delays


Barriers to SME Analysis

- Lack of awareness
- High costs of traditional analysis capability
 - Secondary: Specialized Software, Training, Hardware
 - Primary: Model Access/Development, Validation, Usage
- Lack of domain-specific integrated tools

ProAM Focus

Highly Automated Internet-based Analysis Modules

© GIT

Extend general techniques:

- Internet-based engineering service bureau (ESB)
- X-analysis integration (XAI)
 - Product data-driven plug-and-play analysis modules
 - General purpose XAI toolkit
- Apply in specific AMCOM context:
 - U-Engineer.com pilot commercial ESB with Internet-based PWA/B analysis tools
 - Testing by SMEs in AMCOM supply chain

Project Tasks - Overall

	9/97	10/97	11/97	12/97	1/98	2/98	3/98	4/98	5/98	6/98	7/98	8/98	9/98	10/98	11/98	12/98	1/99	2/99	3/99	4/99	5/99	6/99
Phase 0							•				•											
Phase 1							•					•		•			•				•	
^{>} hase 2 ^{>} hase 3												•									•	
Phase 3																						•

Primary Meeting / Milestone

Phase 0

- 1. Identify SMEs and Primes for pilot in coordination with AMCOM
- 2. Hold Status Review & Planning Meeting with AMCOM ♦ (3/98)
- 3. Baseline engineering service bureau (ESB) capabilities
- 4. Get selected SMEs under contract \blacklozenge (7/98)

Phase 1

- 1 Hold SME Involvement Kick-Off Meeting \blacklozenge (8/98)
- 2 Assess SME needs (including on-site visit) \blacklozenge (3/98, 10/98, 5/99)
- 3 Setup selected SMEs with access to ESB
- 4 Hold WIP Demonstration \blacklozenge (2/99)

Phase 2

- 1. Identify new/extended analysis needs
- 2. Develop and implement new analysis capabilities
- 3. Extend ESB capabilities
- 4. Release initial extensions to SMEs for testing \blacklozenge (8/98)
- 5. Release primary extensions to SMEs for testing \blacklozenge (5/99)

Phase 3

- 1. Support pilot commercial usage by SMEs
- 2. Hold Final Demonstration \blacklozenge (6/99)
- 3. Write reports & package deliverables

Atlanta ECRC

www.ecrc.gatech.edu

Project Tasks - SMEs

Phase 1

- 2.1 Setup additional capabilities required to access the ProAM ESB (if any)
- **2.2** Attend SME participation kick-off and training meeting
- 2.3 Utilize ESB: current capabilities
- 2.4 Complete needs assessment survey
- 2.5 Identify potential test case
- **2.6** Provide test case data
- 2.7 Participate in Work in Progress (WIP) Meeting and Demonstration

Phase 2

2.8 Utilize ESB: extensions under development

Phase 3

- 2.9 Utilize ESB: completed extensions
- 2.10 Summarize feedback on ESB usage and project accomplishments (initial version)
- **2.11** Participate in Final Demo
- 2.12 Summarize feedback on ESB usage and project accomplishments (final version)

Outline

Welcome & Background

Project Overview

- Team
- Motivation & Objectives
- Tasks
- Deliverable Highlights

Break

SME ProAM Experiences

- PWA/B Designer & Fabricator Perspective Phillip Spann (S3)
- PWB Fabricator Perspective Jake Roberts (Circuit Express)

Wrap-Up Discussion - All Overview of Afternoon Sessions

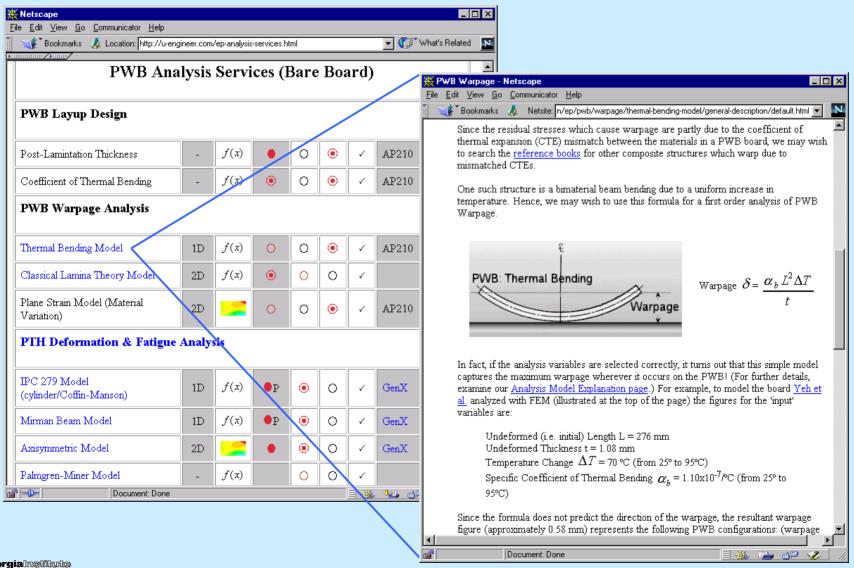
ProAM Deliverable Highlights

General techniques:

- Internet-based engineering service bureau (ESB)
 X-analysis integration (XAI)
 - Product data-driven plug-and-play analysis modules
 - General purpose XAI toolkit
 - Applications in specific AMCOM context:
 - U-Engineer.com pilot commercial ESB with Internet-based PWA/B-specific analysis modules & toolkit
 - Usage by SMEs in AMCOM supply chain

ESB-based Tools

X Netscape	💥 Netscape	ANSYS Graphics
Elle Edit View Go Communicator Help	Elle Edit View Go Communicator Help	
👔 🎺 Bookmarks 🙏 Location: http://u-engineer.com/ep-analysis-services.html 🔄 🕼 " What's Related 🔤	PTH Analysis Results	1 ANSYS 5.4 JAN 25 1999
PWB Analysis Services (Bare Board)	Input Variables Duiled hole damates 4 0.025 inches	14:5:17 NOX1.80DTTON SUB =1 TUB=1
PWB Layup Design	PWB Board thickness, H: 0.0625 inches	SX (AVG) B3T9=0 FoverGraphics
Post-Lamintation Thickness - $f(x)$ • O • \checkmark AP210	Barrel average plated thickness, §, 00012 inches Barrel minimum plated thickness, §, 0001 inches Estimate of Philaro Quality, S, C, 6	ETACEP1 AV82591 AV82591
Coefficient of Thermal Bending - $f(x)$ Image: f(x) image	Reduction in local cross sectional area due to plating or drilling defects, K _c : 10 %	SMMX =-9203 SMMX =1730
PWB Warpage Analysis	Change in temperature, AT 200°C Reference temperature (ambient), T _{ref} 25°C	-2903 -2733 -5733
Thermal Bending 💥 PWB Warpage - Netscape	Compression modulu Coefficient of Therma	E S S S S S S S S S S S S S S S S S S S
Ele Edit View Go Communicator Help Classical Lamina : Softwarks & Netsite [n/ep/pwb/warpage/thermal-bending-model/general-description/default.html V	Ele Edit View Go Communicator Help	File Help
	Glass Transition Tem	
There of an PWB board, we may wish thermal expansion (CTE) mismatch between the materials in a PWB board, we may wish		PWB Thermal Bending Model (1D Formulae) PWB Layup PWR Total Diagonal 5.445181356024792 y
PTH Deforma to search the reference books for other composite structures which warp due to mismatched CTEs.	Plastic modulus of be Yield Strength of ban	Thermal Bending Coef. (ab) 3.496038E-7
One such structure is a bimaterial beam bending due to a uniform increase in	Yield Strength of ben Ultimate Strength of 1 H →← tm	Temperature Change 0
temperature. Hence, we may wish to use this formula for a first order analysis of PWB	Plastic strain at fracts	defor Warpage 0
IPC 2/9 Model Warpage. (cylinder/Coffin-Iv	Coefficient of Therms	Warpage Ratio 0
Mirman Beam Mc	Analysis Model	Margin of Safety 0
	IPC.D.279 Plated Thr TU→	Calculate Results
Ausymmetric Mo PWB: Thermal Bending Palmgren-Miner 1 Warpage Warpage $\delta = \frac{\alpha_b L^2 \Delta T}{t}$	Results	Calculate Results Dielectric Conductor
Palmgren-Miner I Warpage t	Average Stress in th Maximum Strain in the following properties of the PTH to be analyzed, then press the 'Com	ontinue
	PTH barrel Fatigue I Analysis' outton. (1) pical values nave been provided.)	PWB Plane Strain Model (2D FEA) PWA / B Parameters
	PTH Geometry	Initial Temperature 0 Description Warning Module F
In fact, if the analysis variables are selected correctly, it turns out that this simple model	r ₀ - Drilled hole radius.	inches Final Temperature 0 PWA Part# ABC_9010
captures the maximum warpage wherever it occurs on the PWB! (For further details, examine our <u>Analysis Model Explanation page</u> .) For example, to model the board <u>Yeh et</u>	H - PWB board thickness. 0.0625	Temperature Change 0 PWB Part # ABC_9230 inches FEA.Min Elorn Div 2 PWB Pro Lamination Thickness 0.0814
al analyzed with FEM (illustrated at the top of the page) the figures for the 'input' variables are:		FEA.Aspect Ratio 4 PWB Post-Lamination Thickness 0.03030000000
		Max Stress XX 0 PWB Total Width 3.799999999999
Undeformed (i.e. initial) Length L = 276 mm Undeformed Thickness t = 1.08 mm	PTH 'As Manufactured' Properties	Local Warpage 0 PWB Total Length 3.9
Temperature Change $\Delta T = 70$ °C (from 25° to 95°C)	tg - Barrel average plated thickness.	mils Warpage Ratio 0 Allowable Warpage Ratio 0.0075
Specific Coefficient of Thermal Bending $\alpha_b = 1.10 \times 10^{-7}$ /°C (from 25° to 95°C)	t _m - Barrel minimum plated thickness. 1.0	mals Margin of Safety 0
Since the formula does not predict the direction of the warpage, the resultant warpage	KQ-Estimate of plating quality.	Create FEA Input View FEA Input
figure (approximately 0.58 mm) represents the following PWB configurations: (warpage	Kg- Reduction in cross section due to local defects. 10% Reduction	Calculate FEA Results View Graphical Results
📓 Document: Done 📃 💥 🛀 🔊 🏏	Document: Done	


Analysis Documentation

Ready-to-Use Analysis Modules

Lower cost, better quality, fewer delays in supply chain

ESB Analysis Module Catalogs & Documentation

Engineering Information Systems Lab
 eislab.gatech.edu

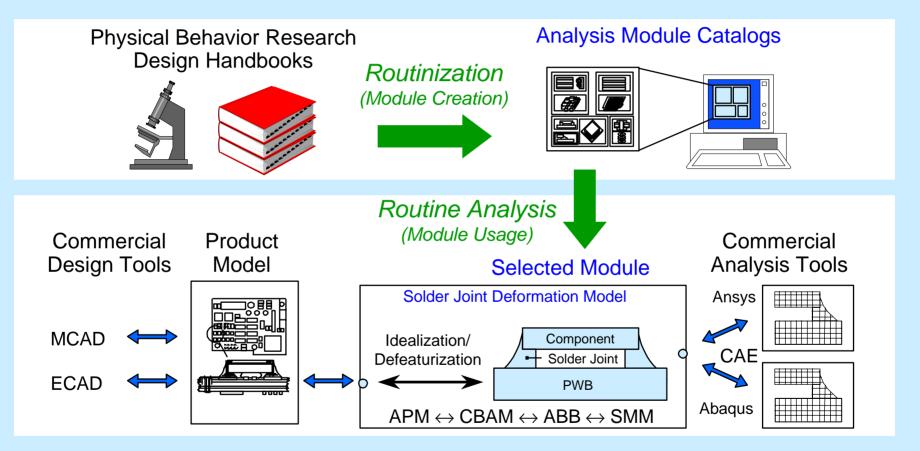
ESB Characteristics

Self-serve analysis

- Pre-developed analysis modules presented in product & process contexts
- Available via the Internet
- Optionally standards-driven (STEP, GenCAM ...):
 - » Reduce manual data transformation & re-entry
 - » Highly automated plug-and-play usage
- Enabled by X-analysis integration technology
- Full-serve analysis as needed
- Possible business models: (beyond ProAM scope)
 - Pay-per-use and/or Pay-per-period
 - Costs averaged across customer base

- Analysis module template & methodology
- Range of access methods:
 - Remote Tools
 - Login to remote workstation; X-Windows display
 - Thick Clients
 - Locally installed w/ Internet/LAN-based solvers via CORBA
 - Thin Clients
 - Web-based forms & solvers all located at ESB
- General web techniques

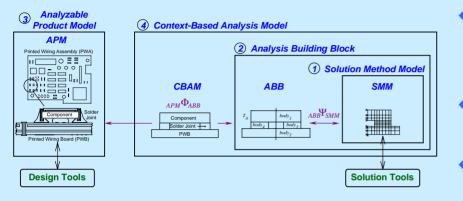
General EC: electronic payment, etc. (not in ProAM scope)


ProAM Deliverable Highlights

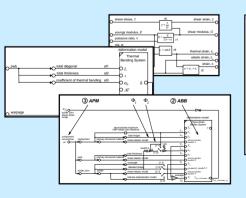
General techniques:

- Internet-based engineering service bureau (ESB)
- X-analysis integration (XAI)
 - Product data-driven plug-and-play analysis modules
 - General purpose XAI toolkit
 - Applications in specific AMCOM context:
 - U-Engineer.com pilot commercial ESB with Internet-based PWA/B-specific analysis modules & toolkit
 - Usage by SMEs in AMCOM supply chain

Plug-and-Play Analysis Module Creation Methodology

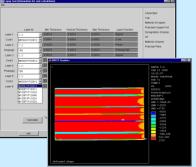


- Provides technique to bridge CAD-CAE gap
- Uses AI & info. technology: objects, constraints, STEP



XaiTools **Prototype X-Analysis Integration Toolkit Second Generation - Java-based**

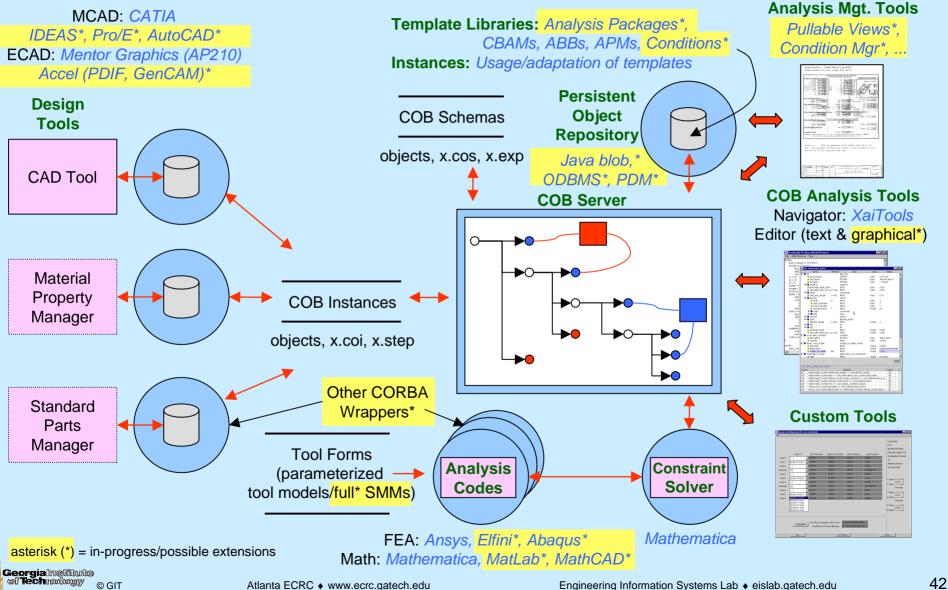
Multi-Representation Architecture (MRA)


Analysis Modules & Building Blocks **Constraint Schematics**

© GIT

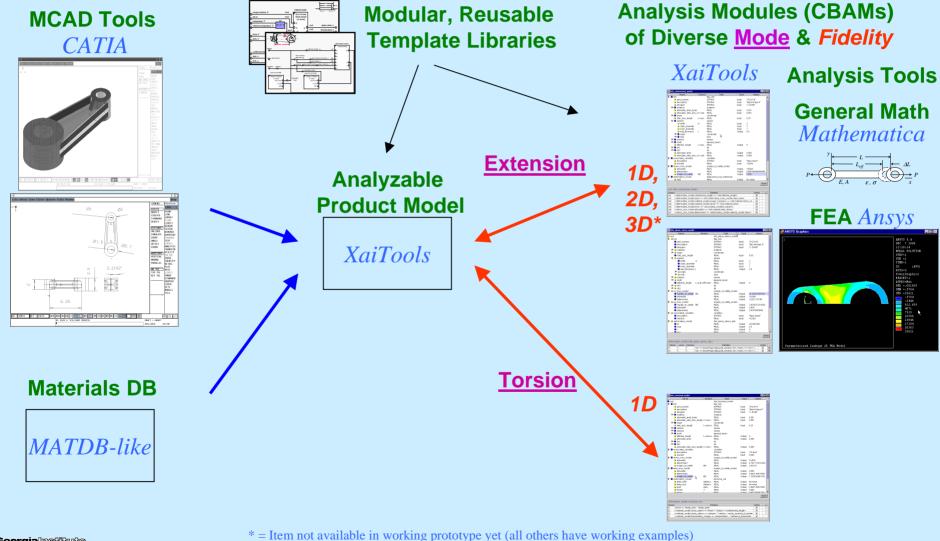
Georgialnetitute al Technicalogy

Implementations



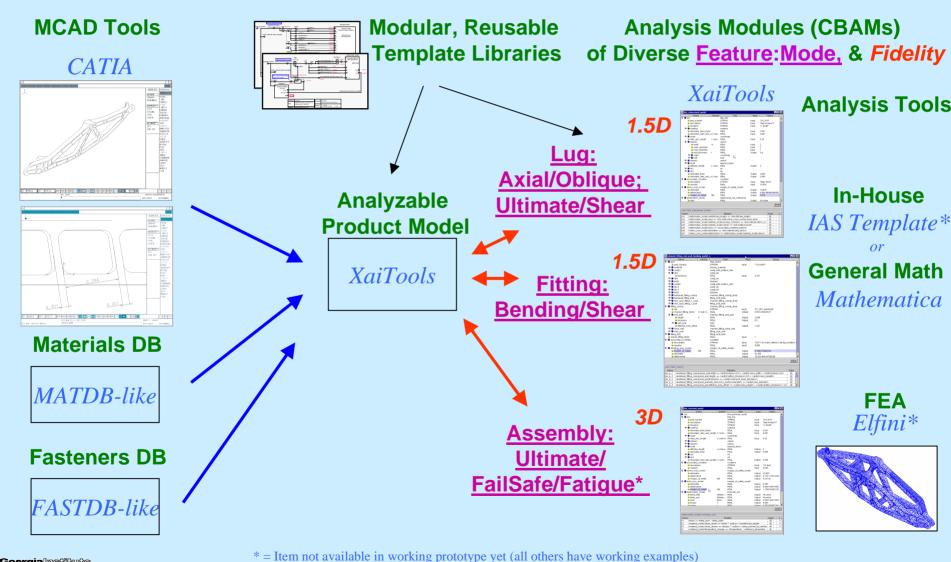
- Product-independent MRA toolkit
- Lexical constrained objects (COBs)
 - Data-driven creation
 - User-adaptable
- Mathematica constraint solver
 - More capabilities
- SMM-type wrappings:
 - FEA tools: Ansys, Abagus*
 - Symbolic Eqn. Solver: Mathematica
- Extended APM technique for design links:
 - CATIA MCAD modeler
- Updates/Extensions in progress*:
 - PWB/A: GenCAM; STEP AP210-based APM link w/ Mentor Graphics BoardStation
 - Generalized MCAD modeler links
 - Advanced parametric FEA transformation
 - **Object-Oriented Optimization**
 - **CORBA-based tool interchanges**
 - XML views of analysis results etc.

XaiTools Tool Architecture


Company/Product-Independent View In-Progress & Potential Extensions as of 6/99

Atlanta ECRC
 www.ecrc.gatech.edu

Flexible High Diversity **Design-Analysis Integration**


Tutorial Examples: Flap Link (Mechanical/Structural Analysis)

Atlanta ECRC + www.ecrc.gatech.edu

Flexible High Diversity Design-Analysis Integration Aerospace Examples: Flap Support Inboard Beam

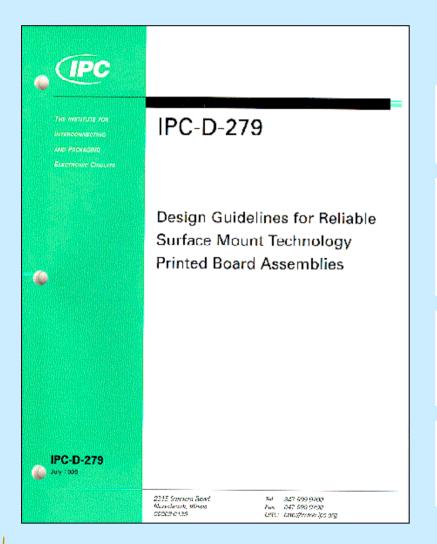
Georgialnstitute of **Tech**nology © GIT

Engineering Information Systems Lab + eislab.gatech.edu

ProAM Deliverable Highlights

General techniques:

- Internet-based engineering service bureau (ESB)
- X-analysis integration (XAI)
 - Product data-driven plug-and-play analysis modules
 - General purpose XAI toolkit
- Applications in specific AMCOM context:
- U-Engineer.com pilot commercial ESB with Internet-based PWA/B-specific analysis modules & toolkit
 - Usage by SMEs in AMCOM supply chain


Program

U-Engineer Analysis Module Catalog with Attributes

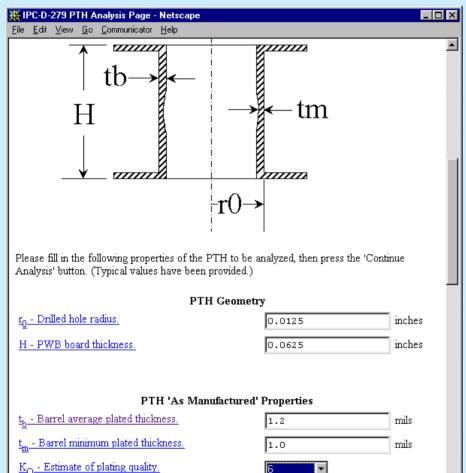
	w <u>G</u> o <u>C</u> ommunicator <u>H</u> elp							<u>_ ×</u>	× 								
▶										Ketscape File Edit View <u>Go</u> ommunicator <u>H</u> elp							
Solution Method - An indication of model computational cost. $f(x)$ Formula Based															💌 🌍 🔭 What's Related		
	Finite Element									PWB Analysis Services (Bare Board)							
Utility	y Ranking - A measure of	analysi	s model	validity													
0	Demonstration	-		-						PWB Layup Design							
0	Trends																
۲	Magnitude Relative									Post-Lamintation Thickness	-	$f(\mathbf{x})$		0	۲	1	AP210
•	Absolute									Coefficient of Thermal Bending	_	$f(\mathbf{x})$	۲	0	۲	~	AP210
A "P" suffix indicates the ranking is backed by physical measurements.											5 (4)					MI 210	
										PWB Warpage Analysis							
Tool A	vailability - A measure of	implem	entation	maturit	y .												
0	Concept									Thermal Bending Model	1D	f(x)	0	0	۲	1	AP210
0	Prototype									Classical Lamina Theory Model	2D	£(~)	۲				
۲	Pilot											$f(\mathbf{x})$	•	0	0	1	
•	Production									Plane Strain Model (Material Variation)	2D		0	0	۲	~	AP210
										PTH Deformation & Fatigue	Analy	sis					
					A	ailabi	lity			IPC 279 Model (cylinder/Coffin-Manson)	1D	$f(\mathbf{x})$	●₽	۲	0	~	GenX
						Ę				Mirman Beam Model	1D	$f(\mathbf{x})$	●P	۲	0	~	GenX
		ality	Solution Method	Utility Ranking	Self - Serve Web	Self - Serve Toolkit	9			Axisymmetric Model	2D		•	۲	0	~	GenX
		Dimensionality	tion N	lity Ra	- Serv	- Serv	Full - Serve			Palmgren-Miner Model	-	$f(\mathbf{x})$		0	0	~	
		Dim	Solu	Util	Self	Self	Full	Supported Design Formats	6	Document: Done							😼 🕼 🖬 🎸
	Document: Done		•		•												
	Document. Done						121 5362		11.								

Paper-based IPC-D-279 Plated Through Hole Fatigue Analysis

Tedious to Use

PTH/PTV Fatigue Life Estimation

$$\sigma_{avg} = \frac{\left[(\alpha_{E} - \alpha_{Eu})\Delta T + S_{e} \cdot \frac{E_{Eu} - E_{Eu}}{E_{Eu} \cdot E_{Eu}}\right] A_{E} \cdot E_{E} \cdot E_{Eu}}{A_{E} \cdot E_{E} + A_{Eu} \cdot E_{Eu}}$$


$$\Delta \mathcal{E}_{avg} = \frac{(a_{E} - a_{Cu})\Delta T \cdot A_{E} \cdot E_{E} - S_{y} \cdot A_{Cu} \cdot \frac{E_{Cu} - E_{Cu}}{E_{Cu}}}{A_{E} \cdot E_{E} + A_{Cu} \cdot E_{Cu}}$$

$$N_{f}^{-0.6} D_{f}^{0.75} + 0.9 \frac{S_{u}}{E} \left[\frac{e^{D_{f}}}{0.36} \right]^{0.1785 \log \frac{10^{3}}{N_{f}}} - \Delta \varepsilon = 0$$

$$N_f(x\%) = N_f(50\%) \left[\frac{\ln(1-0.01x)}{\ln(0.5)} \right]^{\frac{1}{\beta}}$$

Web-based IPC-D-279 PTH Analysis Module

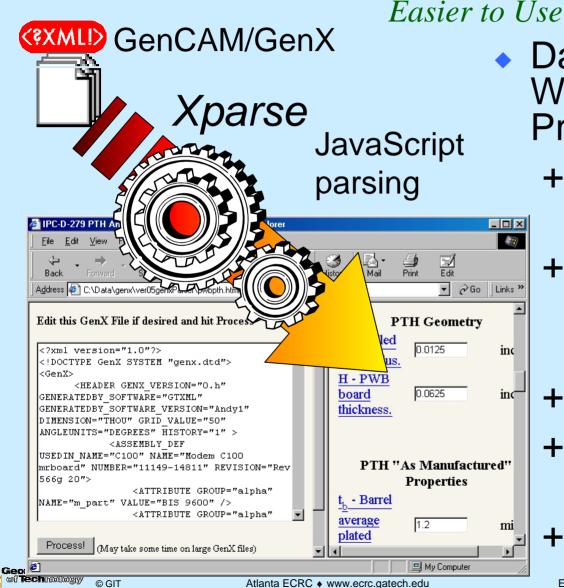
Easy to Use

Netscape		
ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> ommunicator <u>H</u> elp		
PTH Analysis Results		
Input Variables		
Drilled hole diameter, d: 0.025 inches PWB Board thickness, H: 0.0625 inches		
Barrel average plated thickness, t _b : 0.0012 inches		
Barrel minimum plated thickness, t _m : 0.001 inches		
Estimate of Plating Quality, K _O : 6		
Reduction in local cross sectional area due to plating (r drilling defects, K _c : 10 %	
Change in temperature, ΔT: 200°C Reference temperature (ambient), T _{ref} : 25°C		
Compression modulus of resin, E _f : 500000 psi		
Coefficient of Thermal Expansion of resin, $lpha_{ m f}$ below T $_{ m g}$	0.000067 /°C	
Coefficient of Thermal Expansion of resin, $\alpha_{\rm f}$ above T	: 0.000315 /°C	
Hass Transition Temperature, T _g : 137 °C		
Tensile modulus of barrel material, E _b : 3000000 psi		
Plastic modulus of barrel material, E _b ': 100000 psi		
Yield Strength of barrel material, S _v : 25000 psi		
Ultimate Strength of barrel material, S _u : 41000 psi		
Plastic strain at fracture of barrel material, $D_{\mathbf{f}^{'}}$ 0.203		
Coefficient of Thermal Expansion of barrel material, $\alpha_{ m b}$	0.000017 /°C	
Analysis Model		
IPC-D-279 Plated Through Hole Model		
Results		
Average Stress in the PTH barrel: 30.0317e3 psi Maximum Strain in the PTH barrel: 0.121682 PTH barrel Fatigue Life: 10.61e3 cycles to 50% fail:	ure probability.	

Georgialnstitute of Technology © GIT

 \underline{K}_{a} - Reduction in cross section due to local defects.

Document: Done

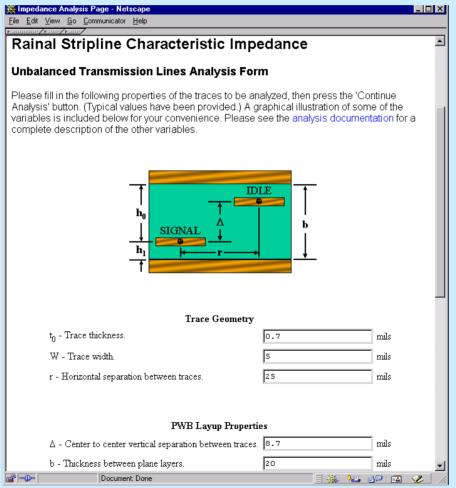

Atlanta ECRC

www.ecrc.gatech.edu

🐃 🚽 🎺

10% Reduction 💌

Product Data-Driven IPC-D-279 PTH Analysis Module



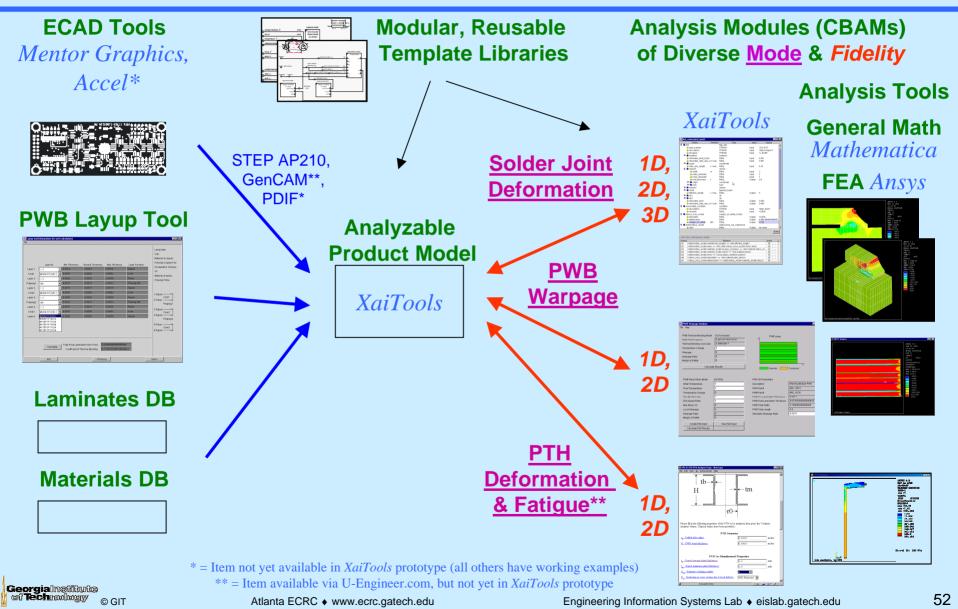
- Data Driven aspect: Web Browser Processes Neutral File
 - + Local Browser Computation
 - + Less Errors than manual idealization & re-entry
 - + Exhaustive search
 - + Data Compression (e.g. 100x)+ Security

Other U-Engineer Modules

PTH finite element analysis (FEA) module
Impedance modules

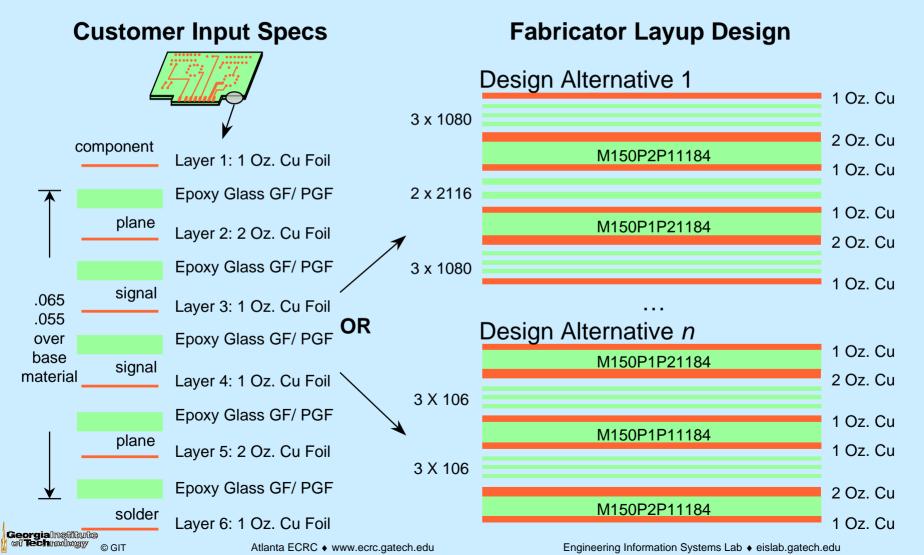
XaiTools PWA-B

Thick Client: Locally installed; Internet ESB/LAN-based Solvers


👹 PWB Warpage Analysis			_							
File Help										
PWB Thermal Bending Model	(1D Formulae)									
PWB Total Diagonal	5.445181356024792	PVVB Layup y								
-	3.496038E-7			PW	VB Wai	rpage	e Analysi	s Iool		
Thermal Bending Coef. (α.b)						• •	•			
Temperature Change	0			-	Math s	olver	: Mathen	natica		
Warpage	0						A			
Warpage Ratio	0			-	FEA SC	olver:	Ansys			
Margin of Safety	0						•			
Calculate	Results	Dielectric Con	x							
	ANSYS Graphics						_		-	·
							ŀ	VVB L	ayup De	sign Tool
PVVB Plane Strain Model	1		ANSYS 5 JAN 25-						51	U
Initial Temperature			14:52:	👸 Layup too	ol (information list an	d calculation)				
Final Temperature			NODAL	File						
			SUB =1 TIME=1		Layer Id	Min Thicknes	ss Normal Thickness	Max Thickness	-	Layup type:
Temperature Change			SX	Layer 1	1.00	0.0014	0.0014	0.0014	Layer Function Signal	Cap
FEA Min Elem Div			RSYS=0	Core1	M050H1P20912 -		0.0050	0.0052	Core	Material of copper:
FEA Aspect Ratio			PowerG EFACET	Layer 2	2.00	0.0028	0.0028	0.0028	Plane	Polyclad-Copper-Foil Designation of epoxy:
Max Stress XX			AVRES=	Prepreg1		0.0075	0.0075	0.0075	Prepreg	GFG
Local Warpage		4	DMX =.	Layer 3	1.00	0.0014	0.0014	0.0014	Signal	Material of epoxy:
Warpage Ratio			SMN =- SMX =1	Core2	M080P1P10912 -	ł	0.0079	0.0082	Core	Polyclad-Tetrall
Margin of Safety				Layer 4	1.00	0.0014	0.0014	0.0014	Signal	1 Signal ————————————————————————————————————
				Prepreg2		0.0075	0.0075	0.0075	Prepreg	2 Plane Core1
Create FEA Input		MN		Laver 5	1.00	0.0014	0.0014	0.0014	Plane	Prepreg1
Calculate FEA Results				Core3	M080P1P10912 -	0.0077	0.0079	0.0082	Core	3 Signal — – – – –
				Layer 6	1.00	0.0014	0.0014	0.0014	Signal	Core2
				Prepreg3	1080-1080-1080 -	0.0084	0.0084	0.0084	Prepreg	Prepreg2
			5	Layer7	1.00	0.0014	0.0014	0.0014	Signal	5 Plane
			1	Core4	M080P1P10912 -	0.0077	0.0079	0.0082	Core	Core3
				Layer8	1.00	0.0014	0.0014	0.0014	Plane	6 Signal — d Prepreg3
				Prepreg4		0.0075	0.0075	0.0075	Prepreg	
				Layer9	2.00	0.0028	0.0028	0.0028	Plane	7 Signal Core4
				Core5	M050H2P10912 -		0.0050	0.0052	Core	8 Plane — d
	deformed shape			Layer10	1.00	0.0014	0.0014	0.0014	Signal	Prepreg4
					1.00					9 Plane Core5
			,		Calculat	e	st-Lamination Nom Thick: cient of Thermal Bending:	0.073030000000	Run Plate M	Varpage Analysis
					exit	1	<<	Previous		next>>
Georgialnetitute of Technology	۸ +۱.	anta ECPC A www.acro.gatach			Engi		formation System			5

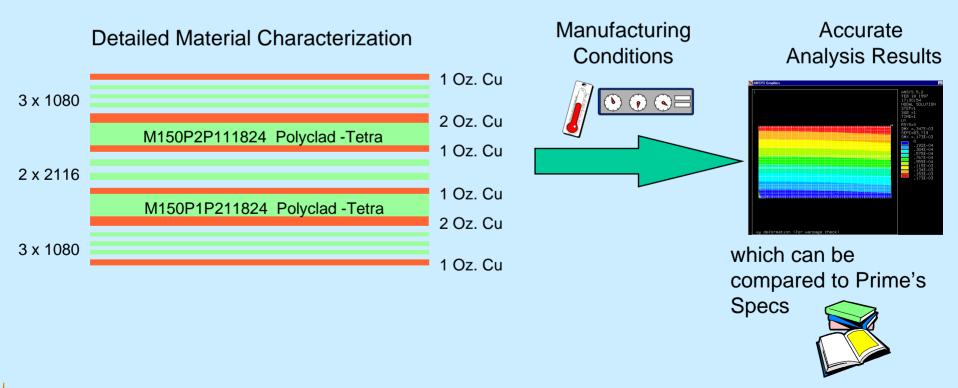
© GIT

51


ProAM X-Analysis Integration XaiTools PWA-B

Overview of PWB Layup Design

SME fabrication engineer <u>designs</u> PWB stackup details



53

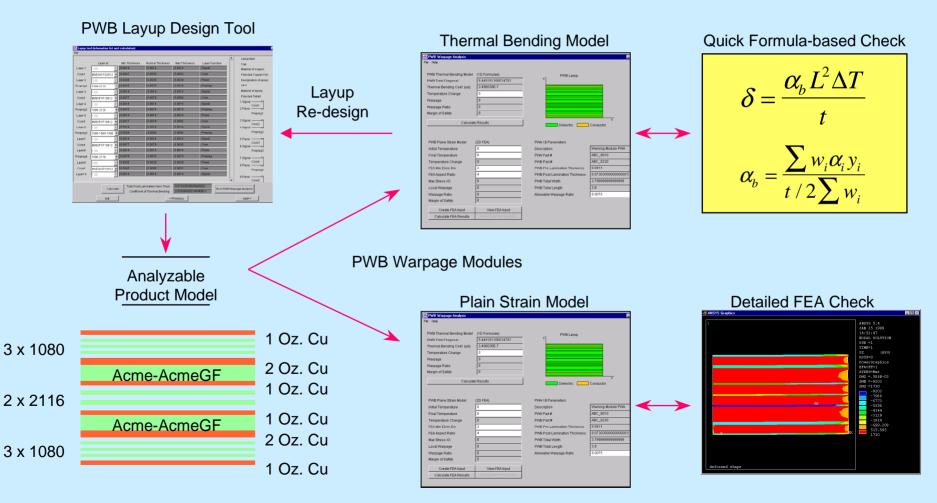
Characteristics of SME Layup Design

 ✓ Layup details impact PWB behavior: warpage, PTH reliability, crosstalk (impedance), etc.
 ✓ SME needs tools to evaluate alternatives
 ✓ Precise material and manufacturing process expertise of

SME fabrication engineers enables more accurate analysis

<u>P10</u>	

Post-Lamination Thickness Calculation


Typical N	/Ianual V			Te	ool-A	ided D	esign			
(as much d	as 1 hour	_ /	pos	t _la min atio	n_thickne	$ss = \sum_{n=1}^{n} nested$	d_thickess	i		
		Print / Lay Up Instructions Rev.		nest	ed_thicknes	$s_{prepreg_set} =$	$\sum_{i=1}^{p} k_n t_{sf_i} - re$	sin_ <i>to _ fi</i>	<mark>II </mark>	
Panel Size <u>16 × 18</u> No. Up	6 Etx #. <u> </u>	18_ W/C # 55689-00_					1			
Thickness Measure: Overall/NiAu							n			
Finished Thickness: Minimum . OB	6Nominal09	3 Maximum , 100							$\sum t_i \alpha_i y_i $	
Laminated Thickness: Minimum . 09	0 Nominal . <u>09</u>	16 Maximum . <u>10 Z.</u>					$\alpha_{B} = C_{1} - \frac{1}{2}$	$\left(t^2/2\right)$ + C	$L_2 = \frac{1}{(t^2/2)}$	$+C_3$
Material Used: Tetra Polyi		Copper Used: Double Treat <u>x</u>		PWB Lay	up Design : Detailed Layu	ιp				
Tetra II Ot	her			File						📩 Layu
	1 1 Stamp Work Order # Dn	Ligntest Weight Side:			LayerId	Min Thickness	Normal Thickness	Max Thickness	Layer Function	_ Cap
0. 1 oz Cu Comp	1			Layer 1	2.00	- 0.0028	0.0028	0.0028	Comp Side	Conc
OZB P/PI	<pre>1 Clip 1 Corner(s) Df 1</pre>	: Mat'l.		Core1	L210150C2/C2AC	▼ 0.0125	0.015	0.0175	Core	Gene
1-1080 5:9	1	Mat'l.		Layer 2	2.00	0.0028	0.0028	0.0028	Signal	Diele
(4 1-2116 1-1080 C Sie	#.012 12-29-95	Mat'l.		Prepreg1	1080*3	- 0.0060	0.0069	0.0078	Prepreg	IPC-4
5 OZE PYPI PLANE	#•029 #•010			Layer 3	2.00	0.0028	0.0028	0.0028	Signal	Diele
6 1080 - 54 102 Cm	#•029	· · · · · · · · · · · · · · · · · · ·		Core2	L210150C2/C2AC	▼ 0.0125 ▼ 0.0028	0.015	0.0175	Core	Allied
7. 1 oz Cu U	#+012	(uired)		Layer 4	2.00	▼ 0.0028 ▼ 0.0060	0.0028	0.0028	Signal	:
7 0×- 7 12-2895 8	# · 0980BL	With Oz. Side Down		Prepreg2	1080*3	0.0028	0.0028	0.0078	Prepreg	
		With Oz. Side Up		Layer 5 Core 3	2.00 L210150C2/C2AC	▼ 0.0028	0.015	0.0028	Core	
9				Layer 6	2.00	0.0028	0.0028	0.0028	Plane	
10	ı	er On		Prepreg3	1080*3	▼ 0.0060	0.0069	0.0078	Prepreg	
11, <u>core</u> - ,056	Expose 0			Layer7	2.00	0.0028	0.0028	0.0028	Signal	
12,, 0616	Print Panels 0	f Layers <u>2+3</u> On . <u>028 ^P/n</u>		Core4	L210150C2/C2AC	▼ 0.0125	0.015	0.0175	Core	
13. 3 X. 905 = , 0315	Prints 3 Panels 0	If Layers 4+5 On . 028 Mp1		Layer8	2.00	0.0028	0.0028	0.0028	Signal	:
14 093	 Print Panels O	If Layers On		Prepreg4	1080*3	▼ 0.0060	0.0069	0.0078	Prepreg	i I I
15	I Print Panels 0	If Laye.s On		Layer9	2.00	0.0028	0.0028	0.0028	Signal	i l
	1	of Layers On		Core5	L210150C2/C2AC	▼ 0.0125	0.015	0.0175	Core	î l
SA_AL INSTRUCTIONS;					2.00	0.0028	0.0028	0.0028	Solder	i 🗌 🔤
	1	Of Layers On								
	1	On			Nesting factor	Solve	otal Post-Lamination Non Coefficient of Thermal B		99999999999999999999999999999999999999	un PWB Warpag
· · · · · · · · · · · · · · · · · · ·	I ExposeC	Nunce Side				<pre><previous< pre=""></previous<></pre>				exit

Georgialnstitute of Technology © GIT

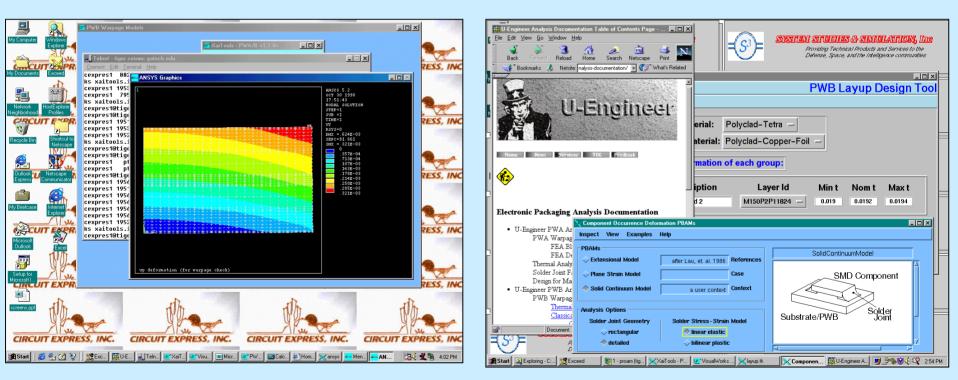
Atlanta ECRC + www.ecrc.gatech.edu

Iterative Design & Analysis

Georgialnstittute of **Tech**nology © GIT

ProAM Deliverable Highlights

General techniques:


- Internet-based engineering service bureau (ESB)
- X-analysis integration (XAI)
 - Product data-driven plug-and-play analysis modules
 - General purpose XAI toolkit
- Applications in specific AMCOM context:
 - U-Engineer.com pilot commercial ESB with Internet-based PWA/B-specific analysis modules & toolkit
- Usage by SMEs in AMCOM supply chain

SME Pilot Usage of ProAM Tools

Circuit Express, Tempe AZ

S3, Huntsville AL

Outline

Welcome & Background

Project Overview

- Team
- Motivation & Objectives
- Tasks
- **Deliverable Highlights**

Break

SME ProAM Experiences

- PWA/B Designer & Fabricator Perspective Phillip Spann (S3)
- PWB Fabricator Perspective Jake Roberts (Circuit Express)

Wrap-Up **Discussion - All Overview of Afternoon Sessions**