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ABSTRACT

Move-limits in structural optimization are used to control the validity of approxima-
tions and to minimize the risk of getting trapped outside the feasible domain. The Two
Point Exponential Approximation Method was introduced by Fadel et al. [Fadel, 1990],
and tested on struectural optimization problems with stress and displacement constraints
as well as on problems with frequency constraints [Sareen, 1991]. The method, which con-
sista in correcting Taylor series approximations using previous design history, is used in
the present paper to automatically determine move-limits. Move—limits are the allowable
changes in design variables during the optimization of the approximate problem. The ex-
ponents, computed in the Two Point Exponential Approximation by matching slopes be-
tween two design iterations, are used as a measure of non—linearity of the objective and
constraints with respect to each of the design variables. The relationship between the
move—limits and the exponents is derived and individual move—limits are computed and
applied toeach design variable. The method is applied to two classical structural optimiza-
tion examples. It provides the engineer with more flexibility when choosing the move-lim-
its and typieally results in faster convergence.

I INTRODUCTION

In the practice of optimization, especially when complex structural, thermal, aerody-
namic or other analyses are needed, the computer time required to perform the analyses is
critical. Most large optimization problems have been formulated such that the number of
full scale analyses are minimal. This is generally accomplished by replacing the original
problem with an approximate, simpler model which can be optimized within certain addi-
tional constraints. A full scale analysis of the original problem is used to get initial results
and the sensitivity of the objective and constraints to the design variables. Using thisin-
formation, an approximate problem is formulated then optimized. The original problem is
then solved again with the design vanables obtained from the optimized approximate
problem and the procedure is reiterated unuil overall convergence is attained. The eritical
aspect of the procedure is the quality of the approximation. For a very highly non-linear
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problem, linear approximations are valid only in a very small domain around the original
design point, whereas in better behaved problems, larger moves can be accomplished. The
trade—off between the quality of approximations and the number of real analyses is what
dictates the overall time needed to reach the optimum (if at all reachable). The accepted
procedure for solving such problems consists in selecting a design state, setting up the
move-limits, i.e. the acceptable relative change in the design variables where the approxi-
mations are expected to yield reasonable results, and optimizing the approximate prob-
lem. The process is then reiterated until overall convergence is obtained. Presently, engi-
neers use their experience to decide on the magnitude of move-limits. The non-linearities
of the functions involved can be assessed, and typically, uniform move—limits are imposed
on all the design variables. At each iteration, the progress of the optimization is moni-
tored, and appropriate changes in move-limits can be imposed. Occasionally, backtrack-
ing is needed, and the move-limits have to be reduced.

II PREVIOUS RESEARCH

There is little evidence of previous research on the subject of automatic evaluation of
move—limits. Bloebaum [Bloebaum, 1991] used expert system rules and the "effectiveness
coefficient” to antomatically generate individual move-limits. She demonstrated a reduc-
tion in the number of iterations needed to reach an optimum when using tailored move—
limits. Her contention is stated in the following quote: "If certain design variables can be
identified as having the most impact on a design and therefore requiring more restrictive
move-limits, it would be possible to allow the less critical design variables more leeway in
their associated move—limits.” In order to assess this impact, Bloebaum used the effective-
ness coefficients which represent the ratio of the slopes of the objective function and the
cumulative constraint with respect to each design variable. She then evaluated the mean
effectiveness coefficient, and the standard deviation of the individual coefficients from the
mean was used to define maximum and minimum move-limits. Design variables with ef-
fectiveness coefficients falling between the upper and lower values were assigned move—
limits based on a linear distribution between the bounds. Expert system rules were then
used to either restrict or increase the move-limits based on heuristic rules involving the
status of the constraints (violated, active, not active).

In this paper, it is proposed to use the information gained during the construction of
the approximations to better understand the behavior of the individual functions, and to
automatically assess the magnitude of the move—limits.

IITI DERIVATION OF THE TWO POINT EXPONENTIAL APPROXIMATION

Several traditional first order approximation methods were summarized in the pa-
per by Fadel et al {Fadel, 1990] ranging from the simple Taylor series in the form:

BX) = 5Ko) + 3 (x; — xip)ox

to the reciprocal, hybrid, and higher order approximations. Fadel then introduced the Two
Point Exponential approximation which is an extension of the simpler Taylor series, ad-
justed by matching the derivatives at the previous design point. This correction term is
incorporated into an exponent which is computed after each real analysis for each
constraint, and with respect to each design variable. The exponent acts as a measure of
goodness of fit: If the linear approximation is valid for a certain constraint, the exponent is
equal to 1, if the reciprocal approximation is more appropriate, the exponent approaches
or is equal to ~1. In other cases, the exponent varies between —1 and 1, correcting the
approximation and improving the fit of the data. The upper and lower limits for the expo-
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nent have been imposed to control the impact of a design variable on a particular
constraint. The exponents are actually computed and stored, but during the evaluation of
the approximation, the appropriate limits are imposed. These limits, although conserva-
tive, have been determined by numerical experimentation [Fadel, 1990).

The Two Point Exponential Approximation is derived as mentioned earlier by match-
ing the slopes at previous design points. Initially, one substitutes xP! for x in the Taylor
series:

S0C) = 30¢%) + X (18 = xP) 75

and after resubstitution, one can write:

8(X) = g(Xo) + Z[{xim]p - l}[‘?ﬂ%(xd

with the exponent evaluated according to:

10952 (X)) ~ log(3S (X))
ki logix;,) — log{xes)

The point X, refers to the design point at the previous iteration and X, refers to the
current design point from where the approximation is carried out. Note that at the first
iteration, since no previous design history exists, a linear or reciprocal step is carried out,
depending on the preference of the user.

What can one learn from this approximation? An exponent P is computed for each
function (objective and constraints) and with respect to each design variable. Essentially,
a matrix of exponents is computed:

P11 P12z P13 - P
Pai P Pr3s - Pm
Pmi Pmz Pm3 - Pmn

In this case, the problem consists of n design variables and m functions (constraints +
objective). This is the same number of unknowns as the first order derivatives. However,
the additional information gathered includes some measure of curvature since the expo-
nent in effect introduces a change of coordinate system (look also at the expression for P
which is similar in form to the second order denivative). Basically, instead of a linear
approximation of the function with respect to the original variables, a linear approxima-
tion of the function with respect to the original variables raised to some exponent is built.
Thia will not include croas terms like in the case of a second order approxzimation, but it will
result in a better linear approximation without the additional cost of computing the Hes-
sian. We suggest therefore to use this information to estimate the range of validity of the
new approximation.

IV DERIVATION OF MOVE-LIMITS

In the process of optimizing, move-limits are imposed on the design variables.
Whether these limits are uniformly imposed, or individually selected, the move-limits ap-
ply to the design variables and not to the functions (This could be done on dual problems.)
Some functions are however better behaved than others, and the move—limits have to be
conservatively established so that the safest relative changes will not result in the opti-
mizer being driven deep into the unfeasible space. Thus, the most non=linear functions
have to determine the magnitude of the move—limits.
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Two cases have to be considered:

# First, if the exponents relative to one design variable (a column in the expo-
nent matrix) are all within the range (-1 to +1), then the approximations with
respect to that particular variable try to fit as accurately as possible the real
functions. In such a case, the maximum move-limit should be allowed for this

design variable.

% Second, if one of the exponents is outside the conservative limits, then the
move—limit has to be restricted in some inversely proportional way to the value
of the exponent. The reason for this choice will be demonstrated below, but intu-
itively, the higher the exponent, the more non—linear is the function, and the
tighter the move-limits should be. Also, whether the computed exponent is
larger than 1 or smaller than -1, the restrictions could be different.

In order to quantify the magnitude of the move-limits, the case where the computed
exponent is larger than 1 was considered first. Inthiscase,a certain error is introduced by
using a maximum exponent of +1 instead of the computed value. If gy(x) is the value ob-
tained with the exponent p, and g;(x) is the value of the function computed with an expo-
nent of 1, then the two approximations (considering a single variable) are:

p )
8(x) = 8%o) + [(;:‘—) - 1}%;—5

and

8100 = 8xo) + (x — X 2

Assuming a relative change of A% in the design variable:
X = Xo + AXg

the error in the approximations can be estimated by subtracting the two expressions:

P — 3
Ag(x) = [QLA}))—_l _ A]XOB_;S(.

or
Ag(x) _a+AP -1
i W, = 5 - A
xoﬁ

This results in a relationship between the exponent and the magnitude of the rela-
tive increase in the design variable. This relationship shows that for an acceptable errorin
the approximation Ag, depending on the location of the design variable (larger or smaller
than 1), and on the sensitivity information (derivative of the function with respect to the
design variable), one can construct a curve that illustrates the change in relative increase
of the variable (A) with respect to the exponent p. This in effect is the relationship between
the move—limit and the computed exponent.

Using a contouring software, the relationship between A and p for various values of
the "error term” W; is displayed (Figure 1). The curves represent the decrease of the
move-limit which is necessary to maintain a constant error as the calculated exponent
grows from 1 to 10. The different curves represent different values of the allowable error
which increases as the curves move away from the origin.
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Figure 1. Relationship between move-limit and exponent when p>1
The same derivation can be performed for the negative exponent. In this case, the function
g is given by:

ad
2100 = gxo) + (x = X0 252

and the error term becomes:

1+AaP -1 3
Aglx) = [( P —Ai 1]"°§§
or
Ag(x)_w__(1+A)P—1_ A
9g p A+1

Xo3x

The contour graph of this function is illustrated in Figure 2, and shows that the
move-limit should be decreased as the exponent decreases below -1.

As mentioned earlier, the multiplicity of curves is due to the selection of the term
Ag(x)
XO l—;%
ever, this would add an undue computational burden. The calculation would have to be
carried for each exponent and with respect to each design variable. The resulting moves

would then have to be compared and the smallest one selected.

_ This term could be accurately computed since all the information is available, how-
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Figure 2. Relationship between move-limit and exponent when p<-1

To avoid this computational burden, the method presented here approximates the
behavior of the function relating the move—limit to the exponent. The highest or smallest
exponent in a column (for a specific variable) is evaluated and the move-limit is computed
once for each exponent. The method consists then in selecting the move-limit for each de-
sign variable according to the function described in Figure 3. The two sides of the "mesa”
are exponentially decreasing functions which are derived by interpolation techniques
from the families of contour plots illustrated in figures 1 and 2. Since the smallest error is
desired, the lowest curves in figures 1 and 2 are selected for the proof of concept.
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Figure 3. "Mesa" function relating move—limits to exponents

Additionally, to provide the engineer with flexibility and control over the process,
maximum and minimum move-limits are asked for at the start of the optimization cycle.
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This provides the user with a certain level of control since the type of problem often dic-
tates the non—linearity of the problem. These limits are used within the algorithm to com-
pute individual move-limits at each iteration and for each design variable. The "mesa’
illustrates relative move—limits which are bounded by the minimum and maximum move
limits provided by the user. Ifall the exponents fall within the +1, -1 range, then the maxi-
mum allowable move is the maximum move specified by the user. Otherwise, the magni-
tude of the smallest or largest exponent is used to compute the actual move which can
range from the maximum to the minimum allowable limits and decreases exponentially on
both sides of the range.

V NUMERICAL APPLICATIONS

Several test cases were used to test the methodology. The finite element program
STAP [Bathe and Wilson, 1976] was connected to the optimizer program CONMIN [Van-
derplaatz, 1973] and used in the study. In all test cases, we compared the results with
those of published literatures and used a termination criterion set at 0.001.

The first test presented in this paper is the standard Ten Bar Truss problem with 10
design variables and 10 stress constraints [Haug and Arora, 1979] (Figure 4.) The design
data for the problem are E =10 ksi, R = 0.1 Ib/in®, minimum cross sectional areas = 0.1 in?,
initial value of cross sectional areas = 10 in2, stress limit = 25 ksi and one loading condi-
tion: —100 lbs at nodes 2 and 4 in the y direction.
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Figure 4. Ten Bar Truss Example
Table 1. Results of the Ten Bar Truss Example

Fixed move limits 10% 26% 50% | 756% | 99%
Number of Iterations 36 20 17 13 21
Variable move-limits

Maxmv - Minmv 75% - 10% 99% - 10%
Number of Iterations 11 14
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The numbers of iterations needed for convergence are illustrated in Table 1. The variable
move-limit strategy "mesa” is compared to the traditional fixed move-limit method. Sev-
eral values for the maximum move-limits are tested and reported. Note that the results
match published results, and that both fixed move limits and variable move limits con-
verge to essentially the same values.

The variable move~limit method in this case effectively reduces the number of itera-
tions required to reach the optimum. When the fixed move-limits are very tight, the opti-
mizer requires an excessive number of iterations to finally converge on the optimum. The
question becomes: how can one select the appropriate move-limit that will result in the
least amount of iterations. The variable move limit gives the engineer more latitude in the
selection of the maximum move-limit and typically converges faster. In all variable move—
limit cases studied, the minimum move-limit was set at 10%. Obviously, the minimum
does play a role in the number of iterations required, and research to quantify this effect is
currently pursued.

The next example is a twenty five bar transmission tower with stress and displace-
ment constraints. The tower example is taken from [Haug and Arora, 1979] and is illus-
trated in Figure 5. The problem consists of 7 design variables (due to symmetry) and 62
constraints. 50 of these are stress constraints in compression and extension, and 12 are
displacement constraints. The design data for this problem are E =10*ksi, R=0.1 1bfin3,
minimum cross sectional areas = 0.01 in?, initial value of cross sectional areas = 5 in2,
stress limit = 40 ksi, displacement constraints 0.35 in in all directions (nodes 3 and 4) and
two loading conditions illustrated in Table 2:

Table 2. Loading conditions for 25 bar truss problem

Loading conditions Node | Direction x Direction y Direction z
(in kips) [in kips] (in kips)
1 1 0.5 0.0 0.0
2 0.5 0.0 0.0
3 1.0 10.0 -5.0
4 0.0 10.0 -5.0
2 2 0.0 -100.0 -5.0
4 0.0 -100.0 -5.0

Figure 5. 25 Bar Transmission Tower {Haug and Arora, 1979]



The numbers of iterations needed for convergence for this case are illustrated in
Table 3 and Figure 6. Again, the results compare very closely to published data.

Table 3. Results of the 25 bar Transmission tower example

Fixed Move-limits 10% 25% 35%
Number of [terations 35* 45 No Convergence
Variable Move-limits 25% -10% 356% — 10% 40% — 10%
Number of Iterations 24 20 No Convergence

The 10% fixed move-limits case converges to a value somewhat higher than the cor-
rect result which means we should tighten the error to converge on the correct result. The
number of iterations would then be very large.

The main observations from these results are the following:

ONECTIVE(\:olum:)
A

§

:

L)

¢ The variable move-limit methodology contributes to the reduction in the
number of iterations required to reach the optimum.

# Because of its self correcting process, the method seems to allow more leeway
in selecting the move limits. In the case of the fixed move—limits procedure, the
optimizer was not able to converge in a reasonable number of iterations (less
than 100) if the move—limit was set at more than 25%. The variable move-lim-
its procedure expanded this range to 35% maximum move. Even if we had se-
lected the 25% maximum move that was used in the fixed move—~limit case, the
new method required less iterations to reach the optimum.
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Figure 6. Convergence History of Fixed Versus Variable
Move—Limits for the 25 bar Transmission Tower Example.

The method was tested on two additional truss problems with stress and displace-
ment and stress constraints and performed according to expectations. Itis presently being
tested on other optimization problems, specifically plate problems with aerodynamic and
vibrational constraints.
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VI CONCLUSION

This paper presents a method to evaluate move—limits automatically during the opti-
mization process. It depends on the exponents that are computed for the Two Point Expo-
nential Approximation. These exponents are a measure of non—linearity and can be corre-
lated to the individual move-limits of each design variable. The method is implemented
and tested on several standard structural optimization cases with stress and displace-
ment constraints. The results obtained show that the method often reduces the number of
iterations required to reach the optimum. The method still relies on the engineer toset the
maximum and minimum allowable move limits which are usually derived from experience
and problem type. It then tightens the move limits or relaxes them based on the non-lin-
earity of the functions. The method is also shown to occasionally allow the engineer more
latitude in selecting the maximum move allowable.
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