
Integrating Engineering Design and Analysis
Using a Multi-Representation Approach †

Russell S. Peak 1,‡ , Robert E. Fulton 2, Ichirou Nishigaki 3, and Noriaki Okamoto 4

1 Visiting Researcher, 3 Researcher, and 4 Chief Researcher
Hitachi Ltd., Mechanical Engineering Research Laboratory
502 Kandatsu, Tsuchiura, Ibaraki 300, Japan

2 Professor
Georgia Institute of Technology, School of Mechanical Engineering
Atlanta, Georgia, 30332-0405, USA

Abstract With the present gap between CAD and CAE, designers are often hindered in their
efforts to explore design alternatives and ensure product robustness. This paper describes the multi-
representation architecture (MRA) - a design-analysis integration strategy that views CAD-CAE
integration as an information-intensive mapping between design models and analysis models. The MRA
divides this mapping into subproblems using four information representations: solution method models
(SMMs), analysis building blocks (ABBs), product models (PMs), and product model-based analysis
models (PBAMs). A key distinction is the explicit representation of design-analysis associativity as PM-
ABB idealization linkages that are contained in PBAMs.

The MRA achieves flexibility by supporting different solution tools and design tools, and by
accommodating analysis models of diverse discipline, complexity and solution method. Object and
constraint graph techniques provide modularity and rich semantics.

Priority has been given to the class of problems termed routine analysis - the regular use of
established analysis models in product design. Representative solder joint fatigue case studies
demonstrate that the MRA enables highly automated routine analysis for mixed formula-based and finite
element-based models. Accordingly, one can employ the MRA and associated methodology to create
specialized CAE tools that utilize both design information and general purpose solution tools.

Keywords
• CAD-CAE integration
• design-analysis associativity
• idealization
• routine analysis
• constraint schematic

• multi-representation architecture (MRA)
• solution method model (SMM)
• analysis building block (ABB)
• product model (PM)
• product model-based analysis model (PBAM)

Nomenclature
MRA multi-representation architecture
SMM solution method model
ABB analysis building block
PM product model
PBAM product model-based analysis model
Ψ ABB-SMM transformation
Γ idealization relation between design and analysis attributes
Φ PM-ABB associativity linkage indicating usage of one or more Γi

† Reference: Engineering with Computers (1998) 14: 93-114. Original version submitted March 1995. This

document is a February 1999 revision, which includes minor updates and formatting for web delivery.
‡ Affiliation as of January 1996: Assistant Director, Engineering Information Systems Laboratory, Georgia Institute

of Technology, Atlanta, Georgia 30332-0560, USA, http://eislab.gatech.edu/

http://eislab.gatech.edu

2

1 Introduction

In today's product design process, a significant gap typically remains between computer aided design
(CAD) and computer aided engineering (CAE). In an industry survey, Liker et al. [1] confirm this
observation and identify ‘an iterative and seamless link between CAD and CAE’ as one of the ‘unfulfilled
promises of CAD’.

A recent survey of design-analysis integration practice and research highlights the following
needs [2]:
• General methodologies for automating routine analysis to support product design: Methodologies are

lacking for creating CAE systems that provide designers with product-specific tools while taking
advantage of general purpose analysis tools.

• Representation of design-analysis associativity. Design-analysis integration requires capturing how a
CAE model is related to a CAD model, both for creating the analysis model and for associating
analysis results back with the design model.

• Support for numerous diverse analysis models for each product type. The same kind of product often
has analysis models from a variety of engineering disciplines that involve different solution
techniques. Even within the same discipline, analysis models of varying resolution and complexity
can exist for the same analysis problem. The unifying factor among these numerous analysis models is
the product itself. Hence, the product information used by these analysis models should ideally come
from a common source to maintain consistency and support analysis automation.

Other objectives that an ideal design-analysis integration strategy should fulfill are described in the same
work, including support for design and analysis tools from different vendors.

This paper describes an architecture aimed at meeting the above needs and discusses the extent of
success to date. It overviews the components of this approach and proposes a methodology for creating
automated routine analysis tools.

2 Multi-Representation Architecture Overview

Given the above needs, the gap between design and analysis models is considered too large for a single
general integration bridge. While many aspects of engineering analysis are computation-intensive, this
research views CAD-CAE integration as an information-intensive problem that requires engineering
information management solutions. The multi-representation architecture (MRA) has been developed
to address this problem by placing four information representations as stepping stones between the design
and analysis tool extremes. Fig. 1 summarizes this multi-representation architecture using solder joint
thermomechanical analysis as an example.

On the right extreme are solution method models (SMMs) representing analysis models in

1 Solution Method Model

ΨABB SMM

2 Analysis Building Block

4 Product Model-Based Analysis Model3 Product Model

SMMABB

ΦPM ABB

PBAM

PM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3
body2

body1
body4

T0

Printed Wiring Board (PWB)

Solder
JointComponent

Fig. 1 The Multi-Representation Architecture for Design-Analysis Integration

3

relatively low-level, solution method-specific form. SMMs combine solution tool inputs, outputs, and
control into a single information entity to facilitate automated solution tool access and results retrieval.

Analysis building blocks (ABBs) represent engineering analysis concepts in a manner that is
largely independent of product application and solution method. ABBs obtain results by generating
SMMs through transformations, ABB SMMΨ , that are based on solution method considerations.

Skipping to the left extreme, product models (PMs) represent detailed, design-oriented product
information. A PM is considered the master description of a product which supplies information to other
product life cycle tasks, including engineering analysis and manufacturing. To enable usage by
potentially many analysis applications, PMs in the MRA go beyond their traditional role and support
idealizations that relate detailed, design-oriented attributes with simplified, analysis-oriented attributes.

Finally, product model-based analysis models (PBAMs) contain linkages that represent design-
analysis associativity between PMs and ABBs, PM ABBΦ . These associativity linkages indicate the usage
of idealizations for a particular analysis application.

From the MRA viewpoint, providing solutions to the design-analysis integration problem
involves defining these four representations (SMMs, ABBs, PMs, and PBAMs) and two inter-
representation mappings (ABB SMMΨ and PM ABBΦ). The following sections describe these components
and how together they provide flexible, modular analysis capabilities to support product design. Solder
joint analysis examples from a prototype implementation of the MRA are included. More detailed
descriptions of the ABB and PBAM representations and these case studies are available [2, 3, 4, 5].

3 Solution Method Models

In an abstracted view of an engineering solution process (Fig. 2), model data and tool control are input to
a solution tool, and results are subsequently output. These solution tools are generally computational
software programs such as commercial finite element analysis (FEA) tools, symbolic equation solvers, and
proprietary specialized codes. In this paper FEA tools provide specific examples for the concepts
discussed.

Solution tools in use today typically accept inputs and produce outputs in the form of user
actions, computer files and graphics. In the FEA solution process of Fig. 3, for example, the
postprocessor tool takes postprocessor control and solved mesh model files as inputs, and produces
graphics and files of processed results as outputs. Extrema, such as maximum displacements and stresses,
are a type of processed result that often interest product designers.

Note that this FEA solution process involves a sequence of tools that each play a distinct role in
the overall solution process. The files consumed and generated for a single analysis problem often have
no explicitly stated relationship, except possibly in the notes of the engineering analyst.

3.1 Information Content

With the automation of such solution processes in mind, a solution method model is defined to be the
information entity that wraps these tool inputs and outputs into a single logical package. In the case of
FEA, an SMM is not just the preprocessor input file; it also includes files that control the solution tool, as
well as the results themselves. After execution, an SMM instance contains the following information at a
minimum:

Model Data

Tool Control
ResultsSolution Tool

Fig. 2 Typical Engineering Solution Process

4

• Analysis results that fulfill the analysis problem purpose.
• Initial inputs that produce these results (e.g. preprocessor model, preprocessor control, and

postprocessor control).
Thus, an SMM instance need not store all intermediate results, depending on the archival needs and
results requirements of the current analysis problem. The log of each tool can be considered an analysis
result and included in the SMM instance, if desired, to check for analysis errors and record solution
statistics.

3.2 Tool Agents

For flexibility in automating solution processes like Fig. 3, SMMs use tool agents that serve as automated
tool wrappers. Tool agents perform the following tasks partially depicted in Fig. 4 for the case of FEA:

1. Determine which solution tool instances to use. For a given SMM instance, these may reside on
different machines.

2. Provide solution tool inputs. Create input files based on initial inputs. Transfer these files and
intermediate tool outputs to the appropriate solution tool.

3. Run each tool. Show tool progress, including graphics output.
4. Retrieve results. Load results into the SMM instance, which then parses the results to extract

salient information (e.g. stress extrema).
While the SMM instance represents the analysis model itself, the tool agent manages the operation of site-
specific tools to solve this model.

Preprocessor
Model

Preprocessor Control

Solved
Mesh Model

Postprocessor Control

Processed
Results

Preprocessor Solver Postprocessor

Unsolved
Mesh Model

A

3

11 10

98

4 3

2

7

56

1

A

A
2

1

CL

extrema,
graphics

Fig. 3 Typical FEA Process

1 Solution Method Model Solution Tool s

preprocessor
model

mesh
model

results
extrema

σ, ε, u

A

3

11 10

98

4 3

2

7

56

1

A

A2

1

CL Files

Operating SystemObject Environment

Tool
Agent

inputs &
control

outputs

FEA Tools

Fig. 4 Automated Tool Operation via SMMs and Tool Agents

5

3.3 Example SMMs

SMMs for Ansys [6] and Cadas [7] (two representative FEA tools) have been implemented as object
classes to demonstrate these concepts. Fig. 5 shows an Ansys SMM screen which closely resembles the
analysis process in Fig. 3. The entity that automatically creates an SMM instance and receives its results
(known as its context) is usually an ABB. In such cases users can employ this kind of screen to simply
view the SMM details if desired. Alternately, a user can play the role of SMM context and enter the
preprocessor model and postprocessor control commands directly via such screens. He or she can then
submit the job for automatic execution and results retrieval.

In the most basic case, a tool agent takes initial inputs from an SMM instance, combines them
into a single file, and invokes the solution tool. This situation is possible when all solution functions are
invoked as a single program on a single machine. The value of automated tool agents becomes more
apparent in complex computing environments in which solution functions are divided among distinct
tools located on different machines. A Cadas SMM instance demonstrates this case, for example, with
distinct pre- and postprocessor tools running on a high-end graphics workstation, and various solvers
available on several high performance computers. In such cases the tool agent automatically selects tools
(or follows user selections), places SMM initial inputs into separate files, and sequences file transfers and
tool executions on appropriate machines. Intermediate translations between solver and pre/postprocessor
formats are automatically performed.

Experience to date indicates FEA solution processes can be automated to a high degree via
SMMs and tool agents. Tool agents heavily utilize Unix remote shell and X Windows remote display
capabilities to automate file transfers, tool execution, and graphics display. If desired, a user can
temporarily suspend these automated actions and manipulate the tools via their standard interactive
facilities (e.g. to further examine an automatically created mesh). Because existing solution tools typically
have not been developed with wrapping in mind, some of their capabilities are difficult to represent in the

Fig. 5 Prototype Ansys SMM

6

tool control portion of SMMs. In such cases the user must perform some nonautomatable actions, ranging
from pushing a button to entering several commands. Stephens [8] describes engineering tool wrapping
strategies in more detail and reports similar experiences.

4 Analysis Building Blocks

Analysis building blocks (ABBs) represent engineering analysis concepts as computable information
entities that (a) include engineering semantics, and (b) are largely independent of solution method. Table
1 summarizes categories of ABBs described in this paper. Of the two major types, general purpose ABBs
represent analysis concepts independent of a specific product design application, whereas PBAMs
explicitly include design-analysis associativity.

Fig. 6 exemplifies major categories of general purpose ABBs, which have been influenced by the
work of Rosenberg and Karnopp [9], Ingrim and Masada [10], STEP Parts 41 and 105 [11], Mashburn
and Anderson [12], and Stephens [8]. Analysis primitives represent basic engineering concepts as
entities containing semantic groupings of analysis attributes and relations. For example, a simple spring
primitive includes the attributes force, F, total elongation, ∆L, and spring constant, k, as well as the
relation F = k∆L.

Analysis systems are containers of other general purpose ABBs that have been assembled
together to form an engineering analysis model. For example, Fig. 6 shows a cantilever beam system as
an assembly of beam, rigid support, and distributed load primitives.

Table 1 Classification of Analysis Building Blocks

ABB Type D escription
General Purpose ABB - ABB with no product associativity

Analysis Primitive - Basic ABB used in other ABBs
Analysis System - Container joining primitives and/or other analysis systems

General - User-defined instance
Specialized - Predefined template/class

PBAM - Design-analysis associativity container joining PMs & ABBs
General - User-defined instance
Specialized - Predefined template/class

Analysis Primitives

Beam

q(x)

Distributed Load

Rigid
Support

Cantilever Beam System

Analysis Systems
- Primitive building blocks - Containers of ABB "assemblies"

Material Models
σ

ε

σ

ε

Specialized

General

- Predefined templates

- User-defined systems
Analysis VariablesDiscrete Elements

Interconnections

Continua

Plane Strain BodyLinear-
Elastic

Bilinear
Plastic PlateLow Cycle

Fatigue

∆ε

N

Mass Spring Damper

x

y q(x)

Beam

Distributed Load

Rigid
Support

No-Slip
body 1

body 2

Temperature,

Stress,

Strain,

σ

ε

T

Geometry

Fig. 6 Categories of General Purpose ABBs

7

4.1 The ABB Representation

Possessing defined structure and operations, the ABB representation combines constraint graph
techniques [13, 14, 15, 16, 17] and object-oriented principles [18, 19, 20] to represent analysis concepts.
Other engineering applications of constraints include DC motors by Rinderle and Colburn [21], assembly
modeling by Gui and Mäntylä [22] and geometric modeling by Solano and Brunet [23]. Benefits of
objects to engineering have been discussed using examples such as column primitives by Forde et al. [24],
as well as finite elements and matrices by Fenves [25], Filho and Devloo [26], and Lee and Aurora [27].

Within the ABB representation, the ABB structure is the information template for defining data
structure and relations. A specific type of ABB (e.g. Linear-Elastic Material Model) is defined by a
populated ABB structure and can be implemented as an object class. Fig. 7 shows graphical and tabular
information views of the ABB structure, and Table 2 summarizes the purpose of each view. Just as STEP
EXPRESS-G [11] provides a graphical view of a lexical EXPRESS model, these views emphasize subsets

of a populated ABB structure for easier human comprehension [2]. For example, object relationship
diagrams emphasize ABB attributes and ABB hierarchies. The ABB structure is the master view, having
all the content of the other views but in lexical form. For example, the notation a.d indicates d is an

Table 2 ABB Representation Views

Structural View Description
ABB Structure - Information template in lexical form (master view)
Constraint Schematic - Graphical view emphasizing relations among ABB variables
Object Relationship Diagram - Graphical view emphasizing ABB part-of and is-a relations. Based on EXPRESS-G [11]
Subsystem * - Encapsulated view used in other constraint schematics to show occurrence of ABB
Extended Constraint Graph * - Decomposed view of ABB constraint schematic. Helps trace relations among variables
I/O Table * - Explicit view of available input/output combinations

Instance View Description
Graph Instance View * - Annotated extended constraint graph showing usage of ABB instance
Schematic Instance View * - Similarly annotated constraint schematic
Subsystem Instance View * - Similarly annotated subsystem view

*ABBs may have more than one of this type of view.

Subsystem Views

Object Relationship Diagram

ABB Structure

I/O Tables

Extended Constraint Graphs

Constraint Schematic

Fig. 7 Structural Views in the ABB Representation

8

attribute of a, denoting the variable-subvariable relationship (a.k.a. the part-of relationship).
A new notation called constraint schematics [2] graphically emphasizes relationships among

objects. In this notation (Fig. 8) a variable can be a simple object like a number, or it can be a complex
object having attributes that are themselves complex objects. One strength of this notation is depicting
relations among complex objects (analogous to electrical schematics showing connections between
complex integrated circuits). This capability is achieved by graphically showing variable-subvariable
relations, by abstracting complex objects as subsystems (analogous to integrated circuits), and by
supporting hierarchical nesting of other constraint schematics within these subsystems. An option
category indicates alternate subgraphs within a constraint schematic (e.g. the value of f depends on option
category 1 in Fig. 8, where f = s.d for option 1.1, while f = g for option 1.2).

The ABB structural views are analogous to flow charts in procedural programming, as they are
largely independent of a specific computer implementation. Similarly, they aid the development,
implementation, documentation and usage of ABBs and PBAMs [2]. Table 2 also summarizes several
kinds of instance views which depict the usage of an ABB instance by showing specific input and output
values.

4.2 Example Analysis Primitive

To illustrate some of these information views, a spring is modeled as a simple analysis primitive called
Elementary Spring in Fig. 9(a)-9(d). The ABB structure, Fig. 9(a), defines the class of each variable in
this
primitive and the relations among these variables. The constraint schematic, Fig. 9(c), graphically depicts
these relations, using the convention that the appropriate mathematical operator is shown beside the
triangular ternary relation symbol. The figure also includes one possible subsystem view, Fig. 9(d). Fig.
10 shows the usage of an instance of Elementary Spring via a schematic instance view, where L and ∆L
are outputs calculated from inputs F, k, and Lo.

x

variable subvariable subsystem

equality relation

relation

relation

s
a b

dc

a

b

d

c
e

a.da s

r
r(a,b,s.c)

e = b - c

e = f

subvariable s.b

− [1.2]

[1.1]
option 1.1

f
f = s.d

option 1.2
f = g

option category 1

g

Fig. 8 Basic Constraint Schematic Notation

9

Elementary Spring
superclass: Discrete Primitive

variables
undeformed length, Lo : Distance
spring constant, k : Spring Constant
start, x1 : Point
end, x2 : Point
length, L : Distance
total elongation, ∆L : Distance
force, F : Force

subsystems
<none>

semantic linkages
<none>

relations
L x x= −2 1

∆L L Lo= −
F k L= ∆

a. ABB Structure

FF

k

∆ L

deformed state

Lo

L

x2x1

b. Analysis Primitive Figure

L∆
L

Fk

undeformed length,

spring constant, force,

total elongation,

1x
Llength,

0

2x

start,

end,

−

−

c. Constraint Schematic

Spring
Elementary

L∆L

Fk

1x L

0

2x

d. One Subsystem View

Fig. 9 ABB Views of a Spring Primitive

Elementary Spring

22 mm

10 N

2 mm

5 N/mm

20 mm
L∆

L

Fk

undeformed length,

spring constant, force,

total elongation,

1x
Llength,

0

2x

start,

end,

−

−

Fig. 10 Example Schematic Instance View

10

4.3 Example Analysis Systems

The usefulness of constraint schematics becomes more apparent when ABBs like the Elementary Spring
are combined to represent more complex analysis models. The analysis system in Fig. 11 is a simple
example constructed by connecting two instances of Elementary Spring using force and kinematic
boundary conditions (e.g., spring2.F = P and spring1.x2 = spring2.x1). The subsystem view in Fig. 9(d)
occurs twice in this schematic to indicate the presence of these two spring instances. All the inter-
primitive construction is done here using equality relations (Fig. 8) instead of interconnection primitives
for simplified illustration. Three system-level variables, P, u1 and u2, are defined as functions of
subsystem attributes (e.g. u2 = spring2.∆L +u1.). Semantic mappings also exist so that internal subsystem
variables can be accessed by their system level names, (e.g. k2 = spring2.k). A semantic mapping
generally is not shown unless the variable name in the system scope differs from what would be expected.

After an instance of this analysis system is created, the internal relations of each spring instance
take effect and contribute to the overall system behavior. The constraint schematic view of an analysis
system hides primitive-level details, enabling one to concentrate on system-level behavior without losing
the effect of internal details. Furthermore, analysis systems can be used as components in other ABBs,
and so on, thus characterizing the building block nature of ABBs.

A specialized analysis system class is a template representing a set of ABB assemblies with
predefined configuration possibilities. For example, the Plane Strain Bodies System implementation in
Fig. 12 is a specialized analysis system representing a limited class of thermomechanical behavior for
symmetric multimaterial structures. Instances of this specialized analysis system class are constructed
using instances of the Plane Strain Body primitive, which itself has attributes for body geometry and
material model defined by instances of other analysis primitives.

P

k1 k2

u2u1

spring 1

2u

0

spring 2

1u

+
P

Spring
Elementary

L∆L

Fk

1x L

0

2x

Spring
Elementary

L∆L

Fk

1x L

0

2x

a. Analysis System Figure b. Constraint Schematic

Fig. 11 Example Analysis System

11

As with SMMs, the context of an ABB instance indicates who is directly utilizing it. In this
figure the context field indicates a Plane Strain Model PBAM for solder joint analysis created this
instance. In the MRA a PBAM or another ABB is typically the context for general purpose ABB
instances. When users are the context, they can directly input attribute values and interact with analysis
system instances via screens such as Fig. 12.

Alternatively, users can create an equivalent instance using a modeling language approach (Fig.
13). Per Smalltalk syntax, new signifies the creation of an instance of the indicated class [18]. Attributes
are assigned object values in a top-down manner, e.g., such that system body1 is a plane strain body
instance whose geometry is a 0.125 x 0.024" rectangle. Material models are assigned by single high level
statements indicating the intended model type, rather than by specifying multiple disjoint property values.

Fig. 12 Implementation of a Specialized Analysis System

12

This specialized analysis system also supports a predefined variety of body shapes and material models,
which translates into predefined topological variations in the underlying constraint graph [2]. Though
initially developed for use in solder joint analysis, this specialized analysis system class is defined in
product-independent terms, as are all general purpose ABBs. Hence, it can possibly be used as-is or
extended to analyze other products with similarly configured multimaterial structures.

4.4 Solving ABBs Using SMMs

After being created as above, ABB instances use transformations, ABB SMMΨ , to associate themselves with
SMM instances and obtain analysis results. Fig. 14 illustrates this concept for the above specialized
analysis system with an FEA-based SMM. The forward form of ABB SMMΨ involves creation of the SMM
instance and its initial inputs based on solution method considerations (e.g. creation of the preprocessor
model considering symmetry, region decomposition, and mesh density). The inverse form of ABB SMMΨ
takes results from the SMM instance and translates them back into terms that are relevant to the ABB
instance. For example, this specialized analysis system knows which finite elements in the resulting mesh
model are associated with its body3, and thus takes the extreme shear stress among these elements to be
the extreme shear stress in body3. The limited scope of a specialized analysis system enables the highly
automated execution of this process via modular mappings to parameterized preprocessor models.

Depending on the nature of an ABB, it may be solvable by different solution methods - each of
which would have its own associated SMM class (Fig. 15). Because a variety of solution tools exist even
for the same solution method (e.g. for FEA: Abaqus, Ansys, Cadas, Nastran, etc.), the same ABB instance
can produce a corresponding variety of vendor-specific SMMs (Fig. 16).

PlaneStrainBodiesSystem new
referenceTemperature: -55;
body1: (PlaneStrainBody new

geometry: (Rectangle length: 0.125 height: 0.024);
stressStrainModel: (Alumina asLinearElasticModel);
temperature: 125);

body2: (PlaneStrainBody new
geometry: (Rectangle length: 0.15625 height: 0.062);
stressStrainModel: (FR4 asLinearElasticModel);
temperature: 125);

body3: (PlaneStrainBody new
geometry: (Rectangle length: 0.020 height: 0.005);
stressStrainModel: (Solder asLinearElasticModel);
temperature: 125).

Fig. 13 Semantically Rich User Creation of an ABB Instance

1 Solution Method Model

ΨABB SMM

2 Analysis Building Block Solution Tool

inputs &
control

outputs

A1

3

2

A

A

11 10

98

4 3

2

7

56

1

preprocessor
model

mesh
model

4 body

ABB SMM

results
extrema

σ, ε, u

1 body

3 body

2 body

Fig. 14 Obtaining Analysis Results via an SMM

13

Overall, general purpose ABBs serve as product-independent analysis models which contain a
higher degree of analysis intent than SMMs (as numerous types of SMM instances can be derived from
the same ABB instance). An ABB can be thought of as a semantically rich combined ‘pre-preprocessor’
and ‘post-postprocessor’ model for traditional engineering solution tools.

5 Product Models

Much of the CAD/CAE effort in past years has focused on the geometric description of products. Recently
attention has been given to product models (PMs) to also represent non-geometric product information,
including material, assembly information, test specifications, cost, and versioning [28].

In broad terms, a product model is a representation of a product (e.g., a physical system, an
assembly, or a part) that contains life cycle information - the information used by all parties associated
with a product, including design, analysis, manufacturing, marketing, installation, and repair. Though
such an omniscient PM is more a goal at present rather than industrial practice, STEP (STandard for the
Exchange of Product model data) is one effort aimed at realizing this goal [11, 29, 30, 31].

PMs support the information needs of design tools by defining a neutral data structure that
facilitates access to a common product database (Fig. 17). Tools can share information with increased
consistency and reduced redundancy via this common database approach. In terms of the database
management three schema architecture [32], the neutral data structure may be used as the conceptual
schema in product database management systems. Often, however, it is an external schema supported by
the database management systems and design applications, since these systems may have optimized
internal schemas [33].

ABB
Finite Element SMM
Symbolic SMM

Boundary Element SMM
Finite Difference SMM

SMMABBΨ

Fig. 15 ABB Support for Diverse Solution Methods

ABB Cadas SMM
Ansys SMM

Nastran SMM

Vendor-Specific
Finite Element SMMs

SMMABBΨ

Fig. 16 ABB Support for Vendor-Specific SMMs

Product
ModelGeometry

Cost Materials
Assembly

Operating
Conditions

Design
Applications

Tool 1

Tool 2

Tool n

...

Common
Product Database

Fig. 17 Common Resource of Design Information

14

5.1 Purpose in the MRA

In the design-analysis integration context of the MRA, the term product model is used in a narrower sense
to mean the representation of design-oriented information. This information is loosely defined as a
combination of what STEP Part 210 terms the ‘manufacturable description’ [11] plus what the MRA
terms the ‘environmental description’ - the conditions the product may experience during its life cycle,
including manufacturing, storage and operating conditions. Analysis model geometry, connectivity, and
material models are generally related to the former, while loads and boundary conditions are related to the
latter. From a design verification viewpoint, this restricted definition emphasizes the difference between
the independent information that describes a product and the dependent information derived during an
analysis of that product. Hence, in this context design geometry and material information are considered
part of the PM, while a finite element model is not.

Depending on the design process stage, the exchange of information between PMs and analysis
models takes on a different emphasis. In the early stage of design synthesis, analysis models primarily
provide inputs which design tools transform into descriptions in the PM. In the later stage of design
verification, the principal information flow is reversed as the PM supplies the information needs of
analysis models via idealizations. Furthermore, since the PM and analysis models act as both information
servers and receivers to some degree in both stages, supporting their bidirectional associativity is
important.

5.2 Example PWA Product Model

The simplified PWA1 PM utilized in this research is partially given in Fig. 18 using adapted EXPRESS-G
notation. Details of a representative PWA instance are shown in a prototype implementation of this PM
(Fig. 19).

1 PWA = printed wiring assembly (a circuit board with components)

PWB = printed wiring board (a bare circuit board)

<component occurrences>

Resistor Capacitor

STEP EXPRESS-G Notation

attribute 2
S[1:?] (a set) Entity C

attribute 1 Entity B

Entity A1
(a subclass) [ISO 10303-11]

Entity = Class of Objects

Entity A

cost

Integer

Currency

part number

Physical
Object

Solid
Materialdescription

Image

String

primary structural materialphotos

Integrated
Component

Discrete
Network

Micro-
Processor

PWB PWAbody style Electrical
Component

pwb

PWB Layer

magnitude
tolerance

Transistor

Discrete
Component

Diode

Inductor

power rating
Solder
Joint

PWA
Component
Occurrence

Component
Occurrence

reference
designator

location

solder joint

surface

<location><component>

AssemblyMultimaterial
Part

Unimaterial
Part component occurrences

assembly

component

2D
Location

total length

total width
total height

rotation

x
y

<assembly>
layers

Part

Fig. 18 Partial PWA Product Model

15

In this PM, Physical Object is an abstract class representing physical objects. It includes a
photos attribute (a set whose members are of type Image), as well as idealization attributes described
below. Part is a specialization of this entity that includes part number and cost in addition to the
attributes it inherits from Physical Object. PWAs and other products are similarly represented as
specialized subclasses of Part.

An instance of the class Component Occurrence, ω, represents the usage of a part as a
component in another part (i.e., in an assembly). The class PWA Component Occurrence specializes this
concept for PWAs and refers to a component-solder joint-PWB structure, ωc. The inherited component
attribute of this class represents an electrical device of a given part number (an Electrical Component
instance) which may be used multiple times on the same PWA. The unique identifier for a component
occurrence is a reference designator (e.g., U102) versus a part number for a component (e.g., 99120). In
Fig. 19 some details of the selected component occurrence C203 are shown, including its x-y position on
the PWB and a photo of its component, an axial capacitor.

5.3 Support for Idealizations

The MRA extends the traditional role of a PM beyond providing a “manufacturable description” of a
product. An MRA PM also includes relations between these detailed, design-oriented attributes and
simplified, analysis-oriented attributes to support the information needs of potentially many analysis

Fig. 19 PWA Product Model Implementation

16

models. The form of such a relation where an analysis attribute is the output is similar to what has been
called an idealization [34, 35, 36].
Example idealizations (Fig. 20) include finding total dimensions, Γ1, and determining the primary
structural material in a multimaterial part, Γ2.

Geometric Simplification: total length, Ltotal = Γ1(part) (1)

Composition Idealization: primary structural material = Γ2(part) (2)

Another example is a material idealization, Γ3, which assumes that a physical material behaves in some
prescribed manner. Several material models can be associated with the same physical material (e.g.
linear-elastic and bilinear-plastic stress-strain models). Which material model is suitable for a given
analysis model depends upon such factors as analysis purpose and parameter magnitudes.

Material Idealization: linear-elastic model = Γ3(material) (3)

Idealizations in the form of discrete relations and basic formulae have been implemented to date.
For example, overall dimensions are typically included as attributes in electrical component databases - an
implementation of discrete relations. Alternatively, total dimensions could be calculated from a detailed
PM of the component itself if such information is available.

Table 3 shows some values of the discrete composition idealization, Γ2, in which the primary
structural material is stated explicitly based on expert knowledge. These rows are equivalent to expert
system rules, e.g. the resistor row says:

if (a part is a resistor with a SMD body style)
then (the primary structural material = the material composing the resistor's base)

Note, however, that in an object implementation of a PM, such rules are more naturally implemented as
polymorphic methods or attributes of the various part classes. Inferencing is then done automatically
based on the class definition rather than via a distinct inference engine as in a rule-based expert system.

2 SMD = surface mount discrete, LCC = leadless chip carrier

totalL

primary structural material

base: Alumina

Surface Mount Resistor
Cross Section

1Γ :

2Γ :

Fig. 20 Example Analysis Idealizations

Table 3 Example Composition Idealization, Γ2
primary

part body style 2 structural material
Resistor SMD base.material

Microprocessor LCC case.material
PWB core.material

17

Because each type of product typically requires multiple PBAMs, reusability is an important
advantage of including idealizations in the PM representation. In other words, common idealizations like
the examples above are used by potentially many types of products in many types of analysis models.
Consequently, the PM definition of an idealization does not include associativity with any particular
analysis model.

Object-oriented PM implementations readily accommodate the incremental addition of both
general and product-specific idealizations by placing the former high in the class hierarchy and the latter
lower. Idealizations that are likely to be used only in a particular kind of analysis model may be
alternately defined in the associated PBAM.

6 Product Model-Based Analysis Models

Product model-based analysis models (PBAMs) [2] contain design-analysis associativity between PMs
and ABBs, PM ABBΦ . Individual associativity linkages, Φi, represent this relationship explicitly and
indicate the usage of one or more idealizations, Γj, to form a particular analysis model. Typically a
PBAM connects associativity linkages between a PM and a general purpose ABB to take advantage of the
analysis capabilities of the latter. In other words, PBAMs connect PMs to product-independent ABBs in
order to solve product-specific analysis problems.

6.1 Example PBAM

Fig. 21 illustrates these concepts via a solder joint analysis example (after Lau et al. [37]). Due to the
coefficient of thermal expansion mismatch between the PWB and component, the solder joint deforms
under thermal loads. The overall goal of this analysis model is to determine the resulting strain, which
can later be used to estimate the solder joint fatigue life.

The left side of the figure shows design-related details of the PM entities: a component (in this
case, a surface mount resistor), a PWB, solder joints, and epoxy. The assembly of these entities is another
PM entity, a PWA Component Occurrence, ωc, described earlier (Fig. 18). On the right, the ABB used as
a subsystem is the specialized analysis system, Plane Strain Bodies System, presented previously (Fig. 12).

The PBAM, Component Occurrence Plane Strain Model (a.k.a. the Plane Strain Model),
contains associativity linkages, Φi, which indicate how the component, PWB, and solder joints are
modeled as four homogeneous plane strain bodies in the ABB subsystem. Linkage Φ1 uses a geometric
idealization, Γ1, to specify a geometric dimension of ABB body1 based on component geometry.
Similarly, Φ2 uses a composition idealization, Γ2, to specify which component material to consider. It
then uses a material idealization, Γ3, to specify a model of this material for use in body1. This
combination of idealizations is typical for multimaterial parts like electrical components. These two
linkages can be written textually as follows:

Φ1: body1.height, h1 = component.total height, hc (4)

Φ2: body1.stress-strain model = component.primary structural material.linear-elastic model (5)

Note that most of the PM details, including the epoxy, are neglected in this analysis model under the
assumption that they would not significantly affect the analysis results.

From Table 1, the PBAM representation is a special case of the ABB representation which also
includes variables and relations involving PM information. As a result, a specific type of PBAM is
defined by its populated PBAM structure - a special form of the ABB structure, which, for example,
categorizes variables as either analysis variables or product variables [2]. As such, PBAMs benefit from
the defined structure, operations, and views of ABBs described previously. A key point is that design-
analysis associativity linkages are represented explicitly in the same way as other relations.

18

For example, Fig. 22 is the constraint schematic of the above PBAM; it is a structured
information model of Fig. 21 that specifies all associativity linkages (including examples Φ1 and Φ2 from
above), as well as product variables, analysis variables, a subsystem, and other relations. Hence, a variety
of component occurrences, ωc, from a variety of PWAs can be used as PM inputs to instances of this
PBAM.

PBAMs can also include analysis options to support different degrees of idealization. For
example, this type of PBAM supports rectangular and detailed solder joint geometry, as indicated in Fig.
22 by option switch positions [1.1] and [1.2], respectively. Likewise, both linear-elastic [2.1] and bilinear
plastic [2.2] solder models are supported. Which options are chosen for a PBAM instance typically
depends on the intended use of the analysis results and considerations of computational cost versus
analysis accuracy.

6.2 Using PBAMs in Routine Analysis

A major focus of the MRA has been automating the class of problems termed routine analysis - the
regular use of established analysis models in product design [2]. As overviewed later, one can use the
MRA to develop and implement catalogs of specialized PBAMs that represent routine analysis models as
predefined templates. Fig. 23 shows a catalog of solder joint analysis PBAMs based on models by solder
joint researchers [38, 39, 40, 37]. These PBAMs can be used for highly automated routine analysis as in
the design verification scenario illustrated.

Plane Strain Bodies System

PWA Component Occurrence

CL

1

νmaterial ,E(α,)
geometry

body

plane strain body , i = 1...4PWB

Solder
Joint

Epoxy

Component
base: Alumina

core: FR4

Component Occurrence Plane Strain Model

total height, h

linear-elastic model

Φ1

Φ2

ΦABBPM

Γ:1

Γ:
3 PM 4 PBAM

2 ABB
c

4body 3body

2body

1h oT

primary structural
material

Γ:
3

2

i
i

i

Fig. 21 Design-analysis associativity in a solder joint analysis model

soldersolder joint

pwb

component

1.25

deformation model

total height

detailed shape

rectangle

[1.2]

[1.1]

average

[2.2]

[2.1]

ω c
Tc

Ts

inter-solder joint distance
approximate maximum

∆γsj

L s

primary structural material

total thickness

linear-elastic model

Plane Strain

geometry model 3

a

stress-strain
model 1

stress-strain
model 2

stress-strain
model 3

Bodies System

γ xy, extreme, 3

T2

L1

T1

T0

L2

h1

h2

T3

Tsj

hs

hc

L c

γ xy, extreme, sj
bilinear-elastoplastic model

linear-elastic model

primary structural material linear-elastic model

component
occurrence

solder joint
shear strain
range

[1.2]

[1.1]
length 2 +

3 PM 2 ABB2Φ1Φ

Fig. 22 PBAM Constraint Schematic for Component Occurrence Plane Strain Model

19

3) Connect Product
 & Analysis Entities

1. Extensional Model*
[Engelmaier, 1983, 1989]

2. Bending Model
[Mao and Fulton, 1992]

3. Plane Strain Model*
[Lau, et al. 1986]

4. Solid Continuum Model*

1) Select PBAM

-55 C
o

125 C
o

4) Obtain Result

 PWA #95415

User
Actions:

Level 3 PBAM
Plane Strain Model

Component

Substrate/PWB
Solder

Joint

Component: Beam

Substrate/PWB: Beam
Solder Joint: Short Beam

Substrate/PWB: Rod

Component: Rod

Solder Joint: Shear Body Solder Joint: PSB

Component: PSB

Substrate/PWB: PSB

Solder Joint: PSB

Component: PSB

Substrate/PWB: PSB

To

component
occurrence

reference temperature

extreme solder joint shear strain

component temperature

Component Occurrence Deformation PBAMs

ωc

γxy, extreme, sj

PWB

Solder
Joint

 R106
Resistor

solder
model

σ

ε

σ

ε

2) Select Options

[after Lau, et al. 1986]

125 C
o

PWB temperature

Catalog:

Automatic
Actions:

ABB

FEA Tool

SMM

FEA-BasedFormula-Based * case studies

 -0.0098

Case #3
Tc

Ts

 -0.0270

Case #2

Fig. 23 Using PBAMs in Routine Analysis

1)

2)

3)

4)

User
Actions:

Fig. 24 Implemented Catalog of PBAMs

20

To check solder joint strains in a PWA, a designer 1) selects a particular type of PBAM, 2)
selects analysis options, 3) specifies objects containing product information and analysis boundary
conditions as inputs, and 4) requests analysis results as outputs. The following sequence of events then
occurs per the MRA technique. An instance of the selected type of PBAM (Component Occurrence Plane
Strain Model of Fig. 21) is created with these inputs. The PBAM instance creates an ABB instance (a
Plane Strain Bodies Systems instance) and sets its attributes via associativity linkages. This ABB instance
subsequently instantiates an SMM, which in turn calls a tool agent to run the appropriate solution tool
(e.g., an Ansys or Cadas tool). The SMM instance receives the results from this analysis tool and passes
them back to the ABB instance. Finally, the ABB instance returns the results to the PBAM instance,
which puts them in product-specific terms (extreme solder joint shear strain) for usage by the designer.

Fig. 24 shows an implementation of this PBAM catalog, where the screen has been used per the
preceding scenario. From this screen the user can open and view associated SMM and specialized
analysis system instances like those given in Figs. 5 and 12, as this PBAM instance is their root context.
Fig. 25 depicts the Cadas FEA shear stress plot (a) for the rectangular solder joint geometry case, as well
as the u displacement plot (b) for the detailed geometry case. This scenario summarizes how PBAMs
bridge the gap between design and analysis models and serve as product-specific front and back ends to
general purpose analysis tools.

6.3 PBAMs as Building Blocks

Because PBAMs are ABBs, they can be used as subsystems in other PBAMs. Fig. 26 illustrates this
concept via a solder joint fatigue PBAM [2] composed of two other PBAMs and a general purpose ABB.
The three subsystems shown correspond to three major steps in solder joint fatigue, namely determining
thermal loads, solder joint strain, and fatigue life [38, 39].

Component

Solder Joint

PWB

Shear Stress, τxy

a. Rectangular Solder Joint

Displacement, u

b. Detailed Solder Joint

Fig. 25 Automatically Generated FEA Results

21

This PBAM class supports analysis options, [1.x], regarding which deformation model a fatigue
PBAM instance should use as its strain model. Available options are shown in the catalog of Fig. 23,
ranging from a formula-based extensional model [1.1] to a 3-D FEA-based model [1.4]. The choices are
subclasses of the abstract class Component Occurrence Deformation Model, all of which support the
strain model subsystem view in Fig. 26 (including the Plane Strain Model of Fig. 22). When analysis
options involve a common subsystem view such as this, they are known as subsystem substitution
options [2] and are depicted in constraint schematics using a shorthand notation (instead of including
each possible type of subsystem separately with associated option switches).

Even though the deformation PBAM subclasses are internally different, a common subsystem
interface is possible because of object polymorphism and encapsulation. All deformation PBAMs accept
the same component occurrence object, ωc, as a connection, but internally each PBAM subclass extracts
different information from ωc via subclass-specific associativity linkages, Φi. Predictably, the
Extensional Model has fewer linkages than the Plane Strain Model, while the Solid Continuum Model has
more. With access to these seamless variations in analysis complexity, users can choose the PBAM with
the best cost-accuracy combination for their design needs.

Two thermal load options are also available, namely thermal cycling [2.1] and power cycling
[2.2]. An instance using the former option requires no thermal model as it simply equates the component
temperature, Tc, and the substrate/PWB temperature, Ts, to a uniform steady state temperature load, Tss.
In the latter case Tc and Ts are equated to values determined by the thermal model subsystem, which
simulates PWA operating conditions.

PBAMs like Fig. 26 are called complex PBAMs, while those with only one general purpose ABB
subsystem are called simple PBAMs. A PBAM is itself an analysis model, albeit a new kind of product-
specific one that includes idealization relations along with traditional relations. PBAMs are classified as
ABBs due to this fact, coupled with their building block nature and the structure and operations they have
in common with other ABBs. However, PBAMs do not have SMM mappings, ABB SMMΨ , as general
purpose ABBs do. Instead, PBAMs achieve solutions via the general purpose ABBs they ultimately
utilize. It follows that complex PBAMs can solve multi-step problems requiring the interaction of diverse
solution methods. Given this background, Fig. 1 is actually a special case view of the MRA, where the
ABB illustrated is a general purpose ABB and the PBAM is a simple PBAM.

6.4 Other Capabilities

By utilizing constraints, PBAMs can support multidirectional input/output in some cases and aid the

design synthesis process [2]. For example, instead of returning component fatigue life, N f , as an output,

the PBAM in Fig. 26 can accept it as an input and use the Extensional Model to calculate the

Tss

Tsj

soldersolder joint

[2.2]

[2.2]

[2.1]

[2.2]

[2.1]

[2.1]

[2.2]

strain model: [1.x]

fatigue modelr
1

thermal model [2.2]

[2.2]

[2.2]

ωc

Ts

Tc

To

Occurrence
Deformation

Model

∆γsj

Component

∆γsj

Tc

Ts

pwb @T

PWA
Thermal Model

Ta

ωpwa

ωc

Tc

ωc

ωpwa

To

b

cE

∆ε

f

T ∆ε e

∆ε p

Nf

Coffin-Manson

σf'

Model

εf'

ω c

component
occurrence

pwa
occurrence

PBAMs General Purpose ABB

Fig. 26 Solder Joint Fatigue PBAM Constraint Schematic

22

corresponding solder joint height. Fig. 27 summarizes this and other PBAM capabilities via a pictorial
view of the fatigue PBAM and its usage.

7 Methodology for Routine Analysis Automation

The MRA methodology for automating routine analysis involves two distinct phases: tool creation and
tool usage (Fig. 28). During the creation phase, a designer and an analyst first identify which routine
analysis models are to be automated. These two people should be familiar with the types of products and
analysis models being considered. The analyst then works with a developer (a person familiar with the
MRA and associated object and constraint techniques) to develop PBAM classes that represent these
analysis models. PBAM development basically means filling in the structural views of the PBAM class
that will represent a specific type of analysis model (Fig. 7). This development process may be recursive
in that supporting PBAMs, ABBs, SMMs and PM entities must also be developed if they do not already
exist.

Based on the populated structural views, the developer next implements the PBAMs and other
new supporting entities in a specific computing environment. Though likely to evolve with broader usage,
preliminary development and implementation guidelines are available [2].

After the implementations are validated, the next phase of the MRA methodology is entered in
which designers regularly apply the PBAMs to product design, as overviewed earlier. In object-oriented
terms, specialized PBAM classes are developed and implemented in the creation phase, while instances of
these classes are employed during the usage phase.

In keeping with object-oriented philosophy, the MRA methodology eases the creation of product-
specific analysis tools through the reuse of generic entities where possible (Fig. 29). Many types of tools
can be built by adding product-specific entities to the same generic MRA foundation. The present

Product Entities

pbam 2

-55 Co
1 cycle/day

125 C
o

Associativity

Diverse Solution Methods

PBAM

Multidirectional Input/Output

Analysis Entities

Multi-Model
Interaction

Variable
Complexity

Product-Analysis

pbam 1.x CL

FEA

Analysis
Options

 PWA #95415

PWB

Solder
Joint

 R106
Resistor

abb 1

5422 cycles

Case #3

578 cycles

Case #2

Fig. 27 Summary of PBAM Capabilities

1

Identify Routine
Analysis Models

Use
PBAMs

Develop PBAMs
& Related Entities

2 3 4

Product
Designs

Usage PhaseCreation Phase

Designer & Analyst Analyst & Developer Developer Designer

Implement PBAMs
& Related Entities

Analysis
Results

Fig. 28 MRA Methodology for Routine Analysis Automation

23

representative implementation of such a foundation facilitates finite element-based solutions using Ansys
and Cadas SMMs, and maintains constraints using the DeltaBlue constraint solver [14]. The solder joint
examples in this paper come from the PWA-specific analysis tool built upon this foundation. Overall, the
MRA methodology provides a way to incrementally create extendible, modular, product-specific routine
analysis tools. Adding a new analysis model can be as simple as adding a new PBAM subclass.

8 Discussion

8.1 Representation Cardinality

Reflecting the diversity supported by the MRA, note that the cardinality ratio between adjacent
representations is generally many:many. For example, one ABB instance can produce many different
kinds of SMM instances. One kind of SMM can have many instances produced by many kinds of ABBs.
In this light the role a representation plays in the MRA can be further understood by considering the
implications of removing it. If the ABB representation is removed, then each type of PBAM would have
to provide its own mappings to each type of SMM, resulting in duplication of effort. Removing PMs
would necessitate linkages between each PBAM type and each relevant design tool. The number of
required extra linkages multiplies further if more than one representation is removed.

8.2 Specialized Analysis System Pros and Cons

In the current specialized analysis system approach, different analysis system topologies typically
necessitate different specialized analysis system classes or different ABB SMMΨ mappings within the same
class. Consequently, some specialized analysis systems (SASs) are primarily intended for specific
products (Fig. 29). Still, a SAS class is beneficial as a logical place for capturing specialized knowledge
in a reusable manner, including recommended mesh density and specialized ABB SMMΨ mappings. In the
absence of generalized ABB SMMΨ mappings, SASs provide a modular, extendible, expert systems
technique for automating routine analysis. Preliminary results indicate the current ABB structure can also
support user-created general analysis system instances (Table 1), but their subsequent solution via general

ABB SMMΨ mappings remains an open issue.

8.3 Neutral SMMs

The SMMs examples to date basically wrap input and output files for vendor-specific solution tools.
Vendor-independent representations of SMMs could also prove useful if mappings to vendor-specific
SMMs were provided. Fig. 30 illustrates this neutral format concept (analogous to IGES for CAD
geometry) for the case of finite element SMMs. Other solution methods would require their own neutral
representations. With this approach, an FEA-based ABB would need to support only a single mapping,

ABB SMMΨ , between itself and the neutral finite element SMM, instead of a mapping for each vendor-
specific SMM (Fig. 16).

Specific
PMs

Generic MRA
Foundation

Product-Specific
Analysis Tool

Product-Specific
Entities

Specific
PBAMs

Specific
SASs

Abstract
PMs

SMMs
General
Purpose

ABBs
Abstract
PBAMs

1 2 3 4

i

i
i=1...n

Fig. 29 Building Specialized Analysis Tools on the MRA Foundation

24

In the case of FEA, Yeh [41] has demonstrated how the draft standard STEP Part 104 [11] can be
used as a neutral representation of the mesh model portion of a finite element SMM. However, a standard
representation that also includes the preprocessor model (Fig. 3) evidently does not currently exist.

8.4 Other Extensions

Other possible extensions include: a) more sophisticated idealization algorithms that determine
characteristics like primary materials based on part geometry, material properties, and phenomenon type;
b) better support for design synthesis relations, i.e. the inverse of idealizations, where analysis results are
used to modify the PM; and c) better representation of product "environmental descriptions" and their
relation to boundary conditions.

9 Summary

The multi-representation architecture (MRA) has been presented as a design-analysis integration strategy
with the following characteristics. The MRA:

• Addresses the information-intensive nature of CAD-CAE integration;
• Breaks the design-analysis integration gap into smaller subproblems;
• Flexibly supports different design and analysis methods and tools;
• Is based on modular, reusable information building blocks;
• Defines a methodology for creating specialized, highly automated analysis tools to support product

design.

Four representations compose the MRA and together make it a flexible, extendible architecture:

1) Solution Method Model (SMM)
• Packages solution tool inputs, outputs, and control as integrated objects.
• Automates solution tool access and results retrieval via tool agents.

2) Analysis Building Block (ABB)
• Represents analysis concepts using object and constraint graph techniques.
• Has a defined information structure with graphical views (e.g. constraint schematics) to aid ABB

development, implementation, documentation and usage.
• Acts as a semantically rich 'pre-preprocessor' and 'post-postprocessor' model. ABB instances create

SMM instances based on solution method considerations and receive results after automated solution
tool execution.

3) Product Model (PM)
• Represents design aspects of products and enables connections with design tools.
• Supports idealizations usable in numerous analysis models.
• Has possibly many associated PBAMs.

4) Product Model-Based Analysis Model (PBAM)
• Contains linkages explicitly representing design-analysis associativity, indicating the usage of

idealizations.
• Special case of the ABB representation, utilizing the same information views.

Finite Element
SMM Cadas SMM

Ansys SMM

Nastran SMM

Vendor-Specific

ABB
SMMABBΨ

Neutral

Fig. 30 Simplifying ABB-SMM Mappings via Neutral SMMs

25

• Creates analysis models from ABBs and automatically supplies PM data as inputs.
• Represents routine analysis models as automated, predefined templates.
• Supports interaction of analysis models of varying complexity and solution method.
• Enables parametric design studies via multidirectional input/output (in some cases).

To date attention has been primarily given to the representation of design-analysis associativity via
PBAMs, the inclusion of idealizations in PMs, and the automation of routine analysis using the MRA.
PBAMs in particular and the MRA in general have been evaluated using PWA solder joint fatigue as a
representative routine analysis case study. A "starter set" of ABBs and representative SMM classes have
been developed to support this application. Results show that specialized PBAMs enable highly
automated routine analysis and uniformly represent analysis models containing a mixture of both formula-
based and finite element-based relations.

Acknowledgments
This research was initiated under funding from the Georgia Tech Manufacturing Research Center and its
industrial sponsors: DEC, Ford, IBM, Motorola and the U. S. Army Missile Command. Investigation has
continued both at Georgia Tech and Hitachi. We gratefully acknowledge the following people for their
helpful comments and cooperation with regard to this particular paper: Norimasa Chiba, Kiyomi
Morizumi, Andrew Scholand, Srivatsa Shamanna, Diego Tamburini, Michihiro Watanabe, and Takashi
Yokohari.

References

1. Liker, J.; Fleischer, M.; Arnsdorf, D. (1992) Fulfilling the Promises of CAD. Sloan Management Review

(Spring) 74-86
2. Peak, R. S. (1993) Product Model-Based Analytical Models (PBAMs): A New Representation of Engineering

Analysis Models, Doctoral Thesis, Georgia Institute of Technology, Atlanta
3. Peak, R. S.; Fulton, R. E. (1994) A Multi-Representation Approach to CAD/CAE Integration: Research

Overview. Rapid Thermomechanical Design of Electronic Products in a Flexible Integrated Enterprise, Interim
Report, Fulton, R. E.; Ume, C.; et al., Advanced Electronic Packaging Lab., Prj. MS-93-03, Manufacturing
Research Center, Georgia Tech, Atlanta, 22-27

4. Peak, R. S.; Fulton, R. E. (1993) Automating Routine Analysis in Electronic Packaging Using Product Model-
Based Analytical Models (PBAMs), Part I: PBAM Overview. Paper 93-WA/EEP-23, ASME Winter Annual
Meeting, New Orleans

5. Peak, R. S.; Fulton, R. E. (1993) Automating Routine Analysis in Electronic Packaging Using Product Model-
Based Analytical Models (PBAMs), Part II: Solder Joint Fatigue Case Studies. Paper 93-WA/EEP-24, ASME
Winter Annual Meeting, New Orleans

6. ANSYS User's Guide (1990) Swanson Analysis Systems Inc., Houston PA.
7. CADAS Ver. P4 User's Manual (1993) Hitachi Ltd., Hitachi-shi, Japan (in Japanese)
8. Stephens, E. R. (1993) LEGEND: Laboratory for the Generation, Evaluation, and Navigation of Design,

Doctoral Thesis, Georgia Institute of Technology, Atlanta
9. Rosenberg, R. C; Karnopp, D. C. (1983) Introduction to Physical System Dynamics, McGraw Hill, New York
10. Ingrim, M. E.; Masada, G. Y. (1991) Extended Bond Graph Notation. ASME J. Dynamics Systems,

Measurements, and Control, 113 (March) 113-17
11. ISO 10303-x, Industrial Auto. Sys. - Exchange of Prod. Model Data (STEP)

10303-1, Part 1: Overview
10303-11, Part 11: The EXPRESS Language
10303-41, Part 41: Fundamentals of Product Description and Support
10303-104, Part 104: Finite Element Analysis
10303-105, Part 105: Kinematics
10303-210, AP 210: Printed Circuit Assembly Product Design Data

12. Mashburn, T. A.; Anderson, D. C. (1991) An Extensible Computer Environment for Modeling and Analysis in
Mechanical Design. Proc. ASME Computers in Engineering Conf., Vol. 1, 127-35.

26

13. Leler, W. (1988) Constraint Programming Languages - Their Specification and Generation, Addison-Wesley,

Reading MA, USA
14. Freeman-Benson, B. N.; Maloney, J.; Borning, A. (1990) An Incremental Constraint Solver. Comm. ACM, 3(1)

54-63
15. Borning, A.; Freeman-Benson, B.; Maloney, J.; Wilson, M. (1991) Constraint Hierarchies and Their

Applications. 1991 IEEE COMPCON Spring, 388-93
16. Kumar, V. (1992) Algorithms for Constraint Satisfaction Problems: A Survey. AI Magazine, 13, 1, 32-44
17. Sannella, M. (1994) Constraint Satisfaction and Debugging for Interactive User Interfaces, Doctoral Thesis,

University of Washington, Seattle. Available as Dept. of Comp. Sci. & Engineering TR 94-09-10
18. LaLonde, W.; Pugh, J. (1990) Inside Smalltalk - Vol. I, Prentice Hall, Englewood Cliffs NJ
19. Wirfs-Brock, R.; Wilkerson, B.; Wiener, L. (1990) Designing Object-Oriented Software, Prentice Hall,

Englewood Cliffs, NJ
20. Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W. (1991) Object-Oriented Modeling and

Design, Prentice Hall, Englewood Cliffs, NJ
21. Rinderle, J. R.; Colburn, E. R. (1990) Design Relations. Proc. ASME Design Theory & Methodology Conf.,

267-72
22. Gui, J-K.; Mäntylä, M. (1994) Functional Understanding of Assembly Modeling. Comp.-Aided Design, 26, 6,

435-51
23. Solano, L.; Brunet, P. (1994) Constructive Constraint-based Model for Parametric CAD Systems. Comp.-Aided

Design, 26, 8, 614-621
24. Forde, B. W. R.; Russell, A. D.; Stiemer, S. F. (1989) Object-Oriented Knowledge Frameworks. Engineering

with Computers, 5, 79-89
25. Fenves, G. L. (1990) Object-Oriented Programming for Engineering Software Development. Engineering with

Computers, 6, 1-15
26. Filho, J. S. R. A; Devloo, P. R. B. (1991) Object-Oriented Programming in Scientific Computations: The

Beginning of a New Era. Engineering Computations, 8, 81-87
27. Lee, H.; Arora, J. (1991) Object-Oriented Programming for Engineering Applications. Engineering with

Computers, 7, 225-35
28. Eastman, C. M.; Fereshetian, N. (1994) Information Models for Use in Product Design: A Comparison. Comp.-

Aided Design, 26, 7, 551-572
29. Owen, J. (1993) STEP: An Introduction, Information Geometers, Winchester
30. Schenck, D.; Wilson, P. (1994) Information Modeling the EXPRESS Way, Oxford University Press
31. Curran, L. (1994) STEP Bridges Way to Better Product Modeling. Mach. Design (March 7) 137-42
32. Bray, O. H. (1988) Computer Integrated Manufacturing - The Data Management Strategy, Digital Press,

Bedford, MA
33. Rangan, R. M. (1992) An Object Oriented Dictionary Based CAD/CAM Data Exchange Environment. Paper

92-WA/EDB-4, ASME Winter Annual Meeting, Anaheim, CA
34. Wentorf, R.; Budhiraja, A.; Collar, R. R.; Shephard, M. S.; Baehmann, P. L. (1992) Two Prototypes Testing the

Use of an Expert System in the Control of Structural Analysis Idealizations. Expert Systems for Scientific
Computing, (Houstis, E. N., et al., Editors), North-Holland, Amsterdam, 283-326

35. Finn, D. P. (1993) A Physical Modeling Assistant for the Preliminary Stages of Finite Element Analysis. AI
EDAM, 7, 4, 275-286

36. Armstrong, C. G. (1994) Modelling Requirements for Finite-Element Analysis. Comp.-Aided Design, 26, 7,
573-578

37. Lau, J. H.; Rice, D. W.; Avery, P. A. (1986) Nonlinear Analysis of Surface Mount Solder Joint Fatigue. Proc.
IEEE CHMT Intl. Electronic Mfg. Tech. Symp., San Francisco, 173-84

38. Engelmaier, W. (1983) Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling. IEEE Trans.
on Components, Hybrids, and Mfg. Tech., CHMT-6, 3, 232-37

39. Engelmaier, W. (1989) Thermal-Mechanical Effects. Electronics Material Handbook. Vol 1 -Packaging,
(Minges, M. L., Editor), ASM Int'l., Materials Park OH, 740-53

40. Mao, J.; Fulton, R. E. (1992) Thermal Fatigue Reliability of the Solder Joints of Leadless Chip Components.
An Integrated Approach to Printed Wiring Board Design: Thermal Mechanical Behavior and Engineering
Information Integration, Final Report: June 1991 - Sept. 1992, (Fulton, R. E.; Ume, C.; et al., Editor), Mfg.
Research Center - Advanced Electronic Packaging Lab, Georgia Tech, Atlanta

41. Yeh, C. P. (1992) An Integrated Information Framework for Multidisciplinary PWB Design, Doctoral Thesis,
Georgia Institute of Technology, Atlanta

	1 Introduction
	2 Multi-Representation Architecture Overview
	3 Solution Method Models
	3.1 Information Content
	3.2 Tool Agents
	3.3 Example SMMs

	4 Analysis Building Blocks
	4.1 The ABB Representation
	4.2 Example Analysis Primitive
	4.3 Example Analysis Systems
	4.4 Solving ABBs Using SMMs

	5 Product Models
	5.1 Purpose in the MRA
	5.2 Example PWA Product Model
	5.3 Support for Idealizations

	6 Product Model-Based Analysis Models
	6.1 Example PBAM
	6.2 Using PBAMs in Routine Analysis
	6.3 PBAMs as Building Blocks
	6.4 Other Capabilities

	7 Methodology for Routine Analysis Automation
	8 Discussion
	8.1 Representation Cardinality
	8.2 Specialized Analysis System Pros and Cons
	8.3 Neutral SMMs
	8.4 Other Extensions

	9 Summary
	Acknowledgments
	References

