
The Composable Object (COB) Knowledge Representation:
Enabling Advanced Collaborative Engineering Environments (CEEs)

COB Requirements & Objectives (v1.0)

October 31, 2005

Submitted to:
National Aeronautics and Space Administration (NASA)

Goddard Space Flight Center (GSFC)
http://www.gsfc.nasa.gov/
Greenbelt, Maryland USA

Technical Contact:

Stephen C. Waterbury
stephen.c.waterbury@nasa.gov • +1-301-286-7557

Submitted by:
Product & Systems Lifecycle Management (PSLM) Center

http://www.pslm.gatech.edu/
Georgia Institute of Technology (GIT)

Atlanta, Georgia USA

Principal Investigator:
Russell S. Peak, PhD

russell.peak@marc.gatech.edu • +1-404-894-7572

Co-Investigator
Christiaan J. J. Paredis, PhD

chris.paredis@me.gatech.edu • +1-404-894-5613

Lead Researcher:
Diego R. Tamburini, PhD

diego.tamburini@marc.gatech.edu • +1-404-385-7159

Project Web Site:
http://eislab.gatech.edu/projects/nasa-ngcobs/

Copyright © 2005 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved. XaiTools is a
trademark of GTRC. Permission to reproduce for non-profit purposes (including internal corporate usage) is hereby granted provided
this notice and a proper citation are included.

http://www.gsfc.nasa.gov/
mailto:stephen.c.waterbury@nasa.gov
http://www.pslm.gatech.edu/
mailto:russell.peak@marc.gatech.edu
mailto:chris.paredis@me.gatech.edu
mailto:diego.tamburini@marc.gatech.edu
http://eislab.gatech.edu/projects/nasa-ngcobs/

Table of Contents
ABSTRACT .. IV
DOCUMENT HISTORY... IV
PROJECT TEAM .. IV
ACKNOWLEDGEMENTS ... IV
NOMENCLATURE ...V
DISCLAIMER..V
1 DOCUMENT PURPOSE... 1
2 PROJECT BACKGROUND ... 1
3 PROBLEM OVERVIEW .. 2

3.1 CEE CHALLENGES AND NEEDS ... 2
3.2 DESIRED CAPABILITIES OF A CEE SYSTEM ... 6
3.3 CEE SYSTEM DESIGN CONSIDERATIONS... 19

4 ENVISIONED COB/MRA-BASED CEE METHODOLOGY... 20
4.1 ENVISIONED NEXT-GENERATION CEES .. 20

4.1.1 Overview... 20
4.1.2 COB Management System (CMS)-based CEEs .. 24
4.1.3 Standards-based Collective Models as a CEE System Component 26

4.2 COMPOSABLE OBJECTS/MULTI-REPRESENTATION ARCHITECTURE (COB/MRA) BACKGROUND. 28
4.2.1 Overview... 28
4.2.2 Composable Object (COB) Representation .. 29
4.2.3 The Multi-Representation Architecture (MRA)... 31
4.2.4 Towards a Next-Generation MRA for Systems-of-Systems (SoS) ... 32
4.2.5 XaiTools - a Reference Implementation.. 33
4.2.6 Space System Example.. 34

4.3 COB REPRESENTATION REQUIREMENTS TO ENABLE NEXT-GENERATION CEES.......................... 34
5 SUMMARY... 37
REFERENCES ... 38
APPENDIX A - SATELLITE SYSTEM EXAMPLE: FIRESAT.. 40

 ii

List of Figures
Figure 1: Mappings between CEE Challenges, Capabilities and Requirements _____________________ 1
Figure 2: A System Model of a Car (using SysML notation)_____________________________________ 7
Figure 3: System Relations Types ___ 9
Figure 4: Impact of a Change in a System Model __ 10
Figure 5: Slack in a System ___ 10
Figure 6: Maintaining Consistency of Shared Parameters _____________________________________ 11
Figure 7: Version Control of a System Model___ 12
Figure 8: Versioning various aspects of a System Model ______________________________________ 12
Figure 9: Versioning and Consistency __ 13
Figure 10: Analysis Building Blocks (ABBs) as Reusable System Components _____________________ 14
Figure 11: System Simulation ___ 15
Figure 12: External Software Tools in a System Simulation____________________________________ 15
Figure 13: Workflow __ 16
Figure 14: CEE System Use-Case Diagram __ 17
Figure 15: COB Platform and CMS High-Level Architecture __________________________________ 21
Figure 16: Stand-Alone COB Management System (CMS) and COB-Enabled Applications (e.g., in “next-
generation ICEMaker” mode)___ 24
Figure 17: CMS Coupled with a CEE/PLM System (e.g., the NASA ESMD enterprise-level Windchill-
based CEE) ___ 25
Figure 18: CEE Information Federation via a Standards-based Collective Model __________________ 28
Figure 19: Lexical and Graphical Formulations of the COB Representation ______________________ 30
Figure 20: Basic Constraint Schematic Notation (green text = explanation)_______________________ 30
Figure 21: COB Representation Tutorial for Triangles and Prisms______________________________ 31
Figure 22: The Multi-Representation Architecture (MRA) _____________________________________ 32
Figure 23: XaiTools COB Browser___ 34
Figure 24: Space System Design Process [Larson and Wertz, 1999]_____________________________ 41
Figure 25: FireSat Space Satellite Abstract System Schematic [Larson and Wertz, 1999] ____________ 41
Figure 26: FireSat System Design as COB-based SysML Diagrams (Conceptual Draft) _____________ 42
Figure 27: COB/MRA-based Design and Simulation Templates for a Leaf-level FireSat Subsystem: Circuit
Boards ___ 44
Figure 28: General Purpose Analysis Building Blocks (ABBs) Utilized in Figure 27 (d) (SysML
Formulations of ABBs in Figure 10) __ 46

List of Tables
Table 1: Project Life Cycle for Major NASA Systems .. 3
Table 2: CE Challenges and CEE System Desired Capabilities .. 18
Table 3: CEE Use Cases .. 19
Table 4: CEE Capabilities Implemented by Each COB Platform Component... 21
Table 5: COB Platform Components Implementing Each CEE Capability ... 22
Table 6: Typical Sample CEE Subsystem Solution Providers .. 26
Table 7: GIT Technologies for Next-Generation CEEs.. 29
Table 8: Generalized MRA Patterns for Complex Systems Modeling & Simulation (M&S)........................ 33
Table 9: COB Representation Required Capabilities... 35

 iii

Abstract
This document formulates a vision for advanced collaborative engineering environments (CEEs) to aid in
the design, simulation and configuration management of complex engineering systems. Based on inputs
from experienced Systems Engineers and technologists from various industries and government agencies, it
identifies the current major challenges and pain points of Collaborative Engineering. Each of these
challenges and pain points are mapped into desired capabilities of an envisioned CEE System that will
address them.

Next, we present a CEE methodology that embodies these capabilities. We overview work done to date by
GIT on the composable object (COB) knowledge representation as a basis for next-generation CEE
systems. This methodology leverages the multi-representation architecture (MRA) for simulation templates,
the user-oriented SysML standard for system modeling, and standards like STEP AP233 (ISO 10303-233)
for enhanced interoperability. Finally, we present COB representation requirements in the context of this
CEE methodology. In this current project and subsequent phases we are striving to fulfill these
requirements as we develop next-generation COB capabilities.

Document History
Version Date Changes
1.0 2005-10-31 First published version.

Project Team
Primary Team:

NASA GSFC
• Steve Waterbury

GIT
• PI: Russell Peak
• Co-PI: Chris Paredis
• Lead Researcher: Diego Tamburini
• Technical Team:

• Manas Bajaj
• Injoong Kim
• Miyako Wilson

Advisory Team:

• Jim U’Ren (NASA JPL - AP233 Team Lead)
• Sandy Friedenthal (Lockheed Martin - SysML Team Lead)

Acknowledgements
We thank the following individuals for their valuable feedback on this document and/or its components:
Alan Moore (Artisan Software), Roger Burkhart (Deere & Co.), Peter Benson (ECCMA), Doug Clark
(GARD Associates), Laurent Balmelli (IBM), Mike Dickerson and Dirk Zwemer (InterCAX), Jay Brusse
(Muniz Engineering), Jim Andary, Dave Everett, Harry Frisch, and Gary Mosier (NASA GSFC), Clark
Briggs, Steve Cornford, Steve Jenkins, Bob Oberto, Steve Prusha, Farrokh Shoar, Georg Siebes, Joe
Skipper, Luke Voss, Steve Wall, and Becky Wheeler (NASA/JPL), Joe Collins (Naval Research
Laboratory), Matt Aronoff, Conrad Bock, Kevin Brady, Peter Denno, Steven Fenves, Simon Frechette,
Josh Lubell, John Messina, and Ram Sriram (NIST), Mark Austin and Natasha Shmunis (University of
Maryland).

 iv

This feedback came via various interactions, including during the following project meetings (contact the
authors if you would like access to these materials):

• NASA GSFC :
• June 1 & 3, 2005 (Greenbelt, MD)

• NASA JPL:
• July 5-7, 2005 (Pasadena, CA)
• September 23, 2005 (Pasadena, CA)
• October 18, 2005 (Pasadena, CA)

• NIST:
• June 2, 2005 (Gaithersburg, MD)

We would also like to acknowledge the following groups whose members also provided input for this
document:

• INCOSE Model-Driven System Design (MDSD) Working Group
• OMG Systems Engineering Domain-Specific Interest Group (SE DSIG)
• PDES, Inc.

Nomenclature
• ABB: Analysis Building Block
• API: Application Programming Interface
• APM: Analyzable Product Model
• CBAM: Context-Based Analysis Model
• COB: Composable Object
• CEE: Collaborative Engineering Environment
• CMS: COB Management System
• COTS: Commercial Off-The-Shelf Software
• DBMS: Database Management System
• GIT: Georgia Institute of Technology
• GUI: Graphical User Interface
• MRA: Multi-Representation Architecture
• ngCOB: Next-Generation COB
• PSLM: Product & Systems Lifecycle Management
• PLM: Product Lifecycle Management
• SE: Systems Engineer
• SMM: Solution Method Model
• SoS: Systems-of-Systems

Disclaimer
This document may identify commercial product names and materials to describe certain procedures or to provide
concrete examples (i.e., to help clarify abstract concepts via specific instances). In no case does product or material
identification imply recommendation or endorsement by the authors or their organizations, nor does it imply that such
items are necessarily the best available for the purpose. Company, product, or service names may be included that are
trademarks or service marks of others.

 v

1 Document Purpose
The purpose of this document is to formulate a vision for advanced collaborative engineering environments
to aid in the design, simulation and configuration management of complex engineering systems. This
document is one of the deliverables for Phase 1 of the project “Constrained Object Knowledge
Representation: Enabling Advanced Collaborative Engineering Environments (CEEs)” (overviewed in the
next section) as outlined in the project proposal [see EIS Lab 2005].

With this goal of vision formulation in mind, the authors held a series of meetings and interviews with
experienced practicing SEs and technologists from NASA, JPL, LMCO and NIST to identify the current
major challenges and pain points of collaborative engineering. The input from these meetings is captured in
Section 3.1 (“CEE Challenges and Needs”). This list of challenges, as well as the authors’ combined
experience conducting research in the area of design-analysis integration and engineering knowledge
modeling representation, was used to compile a list of desired capabilities that a CEE System should have
to address these pain points (Section 3.2 – “Desired Capabilities of a CEE System”). Section 4.1 presents
an envisioned CEE system and its components that embody these capabilities. Section 4.2 (“Composable
Objects/Multi-Representation Architecture (COB/MRA) ”) overviews the work done to date by GIT on the
COB Representation and the requirements it shall meet to enable next-generation CEE systems. For all the
above lists, this document focuses more on capturing items relevant to the COB methodology rather than
completeness.

Figure 1 illustrates the mapping sequence followed by this document from challenges to requirements;
starting from the CEE Challenges, mapping each challenge to CEE Desired Capabilities to address them,
and in turn mapping these capabilities to the subsystems of GIT’s COB Platform that implement them. Also
shown is how we map the desired capabilities to requirements specific to the COB Representation (the
conceptual foundation of the COB Platform, described in Section 4.2.1).

CEE Challenges
(Section 5.1)

COB Representation
Requirements
(Section 6.2.2)

*

** * *

*

Table 2

Table 9

Table 4

Table 5

implemented by

CEE Desired
Capabilities
(Section 5.2)

COB Platform
Components
(Section 6.1)addressed by

requires

CEE Challenges
(Section 5.1)

COB Representation
Requirements
(Section 6.2.2)

*

** * *

*

Table 2

Table 9

Table 4

Table 5

implemented by

CEE Desired
Capabilities
(Section 5.2)

COB Platform
Components
(Section 6.1)addressed by

requires

Figure 1: Mappings between CEE Challenges, Capabilities and Requirements

The vision outlined in this document is at a rather high-level. The idea is that, once this document captures
what we believe to be a reasonably complete list of requirements, we will prioritize them and determine
which are in scope for our next phases of development. We will then add enough detail to the requirements
in scope to make them testable and to drive the development of prototypes (and, ultimately, production-
quality systems based on commercialization of these techniques).

2 Project Background
This document is the first deliverable of Phase 1 of the NASA Goddard-funded project “The Composable
Object (COB) Knowledge Representation: Enabling Advanced Collaborative Engineering Environments
(CEEs)”. This project is the result of GIT’s response to NASA’s Engineering for Complex Systems
Collaborative Engineering Environment 2003 Call for Proposals. In this work, we are exploring the use of
our COB methodology to support collaborative analysis and decision-making in space mission designs.

 1

During this phase, we are identifying the needs and pain points of collaborative engineering that should be
taken into consideration for the design of collaborative engineering environments, and documenting the
software system requirements to address them. For more details please see the project web pages [EIS Lab
2005].

3 Problem Overview

3.1 CEE Challenges and Needs
This section describes the main challenges, pain points and needs of Collaborative Engineering1 that should
be taken into account for the development of software-based systems and tools to support advanced
collaborative engineering environments. This list was compiled by the authors based on feedback obtained
during a series of meetings and interviews with experienced practicing SEs at NASA and JPL as well as
from the authors’ own experience conducting research and executing projects in the area of design-analysis
integration and modeling of composable objects (or COBs - see Section 4.2 for an introduction). These
challenges will provide the context for the presentation of the desired capabilities of a CEE system in the
next section.

• CHAL-001: Complex team dynamics: Collaborative Engineering brings together a team of
specialists from multiple disciplines with the common objective of designing a system that meets
the mission’s goals in the most cost-effective way. They need to share, negotiate and exchange
information with the other members of the team, and these interactions must be carefully
orchestrated to keep the impact of any changes they make in their subsystems to the rest of the
system under control.

• CHAL-002: Lack of end-user tools for collaborative Systems Engineering: although there is an
abundance of mature and well-established software tools to aid in the design, analysis and
simulation of individual components in the system (which is the focus of Design Engineering),
there is a lack of end-user software tools for managing the complex interconnections of the
components being designed to their supersystem and subsystems (the focus of Systems and
Collaborative Engineering). The collaboration tools currently available focus on the real-time
collaboration and information sharing amongst members of the team during a design session,
providing functionality such as web-based real-time messaging, remote visualization of CAD
models, and mark-up. While these tools add sharing capabilities to traditional PLM systems, they
do not directly address the interconnection of information between models and disciplines.

• CHAL-003: Multidisciplinary: Collaborative Engineering is multidisciplinary by nature.
Individual team members represent different disciplines, and/or individual subsystems such as
Propulsion, Thermal, Structures, Communications, etc. Each discipline generally uses different
software tools, information models, graphical nomenclatures, etc., which of course makes
communication with others difficult at best. It is not practical to solve this problem by forcing
everyone to use the same tools and information models. Instead, a mechanism should be provided
to share information in various formulations (including graphical views) that are understood by
everybody, while at the same time accommodating the individual disciplines’ tools and models.

• CHAL-004: Focus shift over the project’s lifecycle: the goals, focus, team dynamics and
information generated during a Collaborative Engineering project vary widely depending on the
phase of the project’s life cycle. In general, earlier phases have these characteristics:

1) They focus on negotiating and establishing the parameters shared amongst subsystems,
performing multi-disciplinary system trades, proposing alternative concepts, and performing trade
studies to determine at least one design that is feasible (and ideally to identify several designs and
their gradients at points that are considered to be the most cost-effective in a generalized sense),

1 Since Systems Engineering is, by nature, a complex collaborative engineering activity (and, conversely, since
Collaborative Engineering is normally aimed at the design of systems), when we refer to the challenges, pain points
and needs of Collaborative Engineering we are also referring to those of Systems Engineering.

 2

2) They tend to be short in duration.

3) They are highly dynamic and interactive.

4) They resort to quick, back-of-the-envelope calculations.

As the project evolves the focus shifts into adding detail to subsystems and finally to the
individual components and performing more detailed analysis and calculations, which normally
requires the use of specialized software tools. This shift in focus notwithstanding, teams should be
able to build on top of the results from the previous phases, recreating as little information as
possible. Also, at the end of each stage, the information is normally packaged in some way
(normally a written report) for review and for approval to move into the next phase (for example,
at NASA a PDR – Product Design Review – is held at the end of Phase B to determine if they can
proceed onto Phase C).

To illustrate the shift in focus of Systems Engineering throughout the life of a project, Table 1
below lists the various phases of a NASA project (as described in [NASA 1995]), and the main
goal of each phase.

Table 1: Project Life Cycle for Major NASA Systems

Phase Name Goal

Pre-A Advanced Studies
Produce alternatives and ideas from which new programs/projects
can be selected. Prepare program/project proposals for
consideration.

A Preliminary Analysis Determine the feasibility and desirability of a suggested major
system

B Definition
Define the project in enough detail to establish an initial baseline
capable of meeting mission needs. Baseline the “design-to”
specifications.

C Design Complete the detailed design of the system. Baseline the “build-to”
specifications.

D Development Build the subsystems and integrate them to create the system.
Baseline the “as-built” specifications.

E Operations Operate the system and dispose it properly

• CHAL-005: Complex information interconnections: in any sizeable system, the information
connections between subsystems and their parameters may quickly grow into a complex graph of
relations that is hard to visualize and manage. In addition, these relations may not have a
predefined input/output direction (in other words, they are generally non-causal). As a result, the
effect that a change (of a parameter value, mathematical model, assumption, constraint, etc.) has in
other parts of the system becomes harder to predict, while at the same time the sensitivity of the
overall system (the degree to which changes in one part of the system impact other parts of the
system) increases. In other words, the system becomes less “resilient” to changes. Consequently,
the team may incur costly rework when they realize later in the design process that a seemingly
simple change made in one system has a costly effect in another system that was not caught in
time. System-level what-if scenarios also become increasingly difficult to perform.

• CHAL-006: Multiple system views: a system may have multiple views depending on the criteria
used to organize it. For example, the subsystems in a system may be organized depending on their
function, position in the system, discipline, and geographical location. A CEE system must be able

 3

to manage multiple simultaneous views of the same system, allowing users to switch to any of
these views at any time to view or edit and maintaining consistency among them.

• CHAL-007: Information-intensive trade studies: at various points of the project lifecycle, SEs
may need to perform trade studies to select amongst multiple plausible alternatives that meet the
goals and objectives of the system (effectiveness, cost, schedule, and risk – both quantifiable and
otherwise). Trade studies vary widely in complexity and detail depending on the context and the
phase of the project life in which they are performed, but generally speaking they involve the
following steps (for a detailed description of the Trade Study Process, see Section 5.1 of [NASA
1995]):

1. Define the system’s goals and objectives, and identify the constraints it must meet. As the
project evolves, these will take the form of quantifiable performance requirements that a
system must meet.

2. Define the outcome variables (measures of system effectiveness, system performance or
technical attributes, and system cost) and the measurement methods that are going to be
used to compute each. This step explicitly identifies the variables that are important in
meeting the system’s goals and objectives. It also identifies the mathematical models that
are required to evaluate them.

3. Define the selection rule, which defines how the outcome variables are going to be used
to make a selection of the preferred alternative.

4. Define plausible alternatives: alternatives that can potentially meet the goals and
objectives of the system, in other words, that are in the “solution space”.

5. Collect data on each plausible alternative and evaluate the outcome variables using the
measurement methods.

6. Compute estimates of the outcome variables.
7. Make a tentative selection.
8. Perform a “reality check” (scrutinize the results, measurement methods, conformance to

goals, objectives and constraints, etc.)
9. If the tentative selection holds up to the reality check, proceed with it for further

resolution or implementation. The estimates of the outcome variables obtained in step 6
serve as inputs for the next resolution iteration.

From the steps above we can see that trade studies are information- and computation-intensive
processes that require careful management of the system variables, the interconnections amongst
them, and the methods used to compute them. Performing these studies manually – although
possible – is very time-consuming, costly and error prone.

• CHAL-008: Uncertainty: when evaluating values of outcome variables in a system, some of the
inputs, models or measurement methods being used may not be well known (e.g., environmental
impact) or are inherently random (e.g., manufacturing processes). As a result, the values of the
outcome variables will have varying degrees of uncertainty. Often this uncertainty is taken into
account only implicitly—an analyst may include a measure of the uncertainty based on experience
(e.g., the stress analysis has an error of +/- 10%). If the impact of the uncertainty is considered to
be significant, then the SE may perform a sensitivity analysis or even a Monte Carlo simulation to
determine the uncertainty in the output more accurately.

Although much of the Systems Engineering practice is still based on the use of safety factors to
account for uncertainty, increasingly the use of probabilistic representations is gaining acceptance.
With the rapidly decreasing cost of computing resources, probabilistic design methods such as
Design For Six Sigma (DFSS) have become feasible and more reliable alternatives to
deterministic methods [Koch, 2002]. Yet, few engineering environments currently include tools
for uncertainty management. To allow uncertainty to be managed effectively, tools should include
explicit representations of uncertainty, support computational tools for propagating uncertainty
from requirements to performance assessments, and provide methods for decision making based
on uncertain information. For a more detailed overview of how uncertainty impacts the Systems
Engineering process, see [Aughenbaugh, 2004].

 4

• CHAL-009: Capturing decisions and decision rationale: SEs should be able to re-trace the trail
of decisions made about the system as it evolved through its project life cycle. This may be needed
for a variety of purposes such as documentation, auditing, project reviews, learning, supporting
other lifecycle processes (e.g., ranging from long-term sustainment and operation to knowledge
reuse when initiating future systems) and so on. For example, they may need to show why a given
design alternative was chosen against others during a trade study, or why a particular
mathematical model was used instead of another. The decisions that are made are generally
entered into a configuration management system as changes to (or elaborations of) the system
baseline. However, this type of change tracking (and associated rationale capture) does not
necessarily occur during the early stages of the design, when the baseline has not yet been
established and therefore when a configuration management system is not being used yet. During
the early stages of the design, any decision capture mechanism faces the additional challenge of
having to be as unobtrusive as possible, particularly during the formulation and evaluation of
multiple trade studies when agility is particularly critical.

• CHAL-010: Capturing assumptions and applicability of models: for a given calculation there
might be multiple mathematical models that are applicable - depending on the level of detail
required or the computation cost we are willing to incur. SEs should be able to access the
assumptions under which a given model is applicable to make an informed decision as to which
model to utilize. Similarly, the assumptions and other relevant information that underlie
constraints should be also captured, so that it is possible to estimate the effect of relaxing them if
needed.

• CHAL-011: Variety of software tools and information standards: as the project evolves, the level
of detail required demands the use of both generalized and specialized software tools (COTS or
home-grown) for the design, analysis and simulation of the various components of the system. The
number of such tools may grow quite large, and sending and retrieving information to and from
these tools (and performing the necessary data conversions to do so) may become an arduous and
time-consuming task and drastically reduce the agility of the Systems Engineering process. Some
existing information exchange standards (such as ISO STEP) attempt to alleviate this problem.
However, sometimes there are several overlapping standards in the picture, and therefore we still
need to deal with translations and transformation of information.

• CHAL-012: Multiple dimensions of versioning control: there are at least four independent
dimensions of versioning control involved in the design of a system:

• Versioning Control of Design Models: individual components that make up the system
are constantly versioned to capture modifications made to them. For example, the
dimensions of a flap link may be modified to reduce localized stress, resulting in a new
version of the CAD model of the flap link. This versioning is normally managed with
traditional COTS PLM tools, but this operation also needs to be coordinated with the
overall CEE.

• Versioning Control of System Models: models of the top-level system and major
subsystems are themselves also constantly revised, for example, as subsystems, output
variables and connections are added or modified. Each of these modifications effectively
results in a new version of these system models.

• Versioning Control of Computation Models / Simulation Templates: when selecting a
computation model (say, to solve for system variables or to assist in a trade study), SEs
often resort to models that have been used (and proven successful) in previous missions.
They may use these computation models as-is (if the usage conditions and assumptions
are similar), or modify them to accommodate different usage conditions. Some models
are reused often enough that they warrant capturing in the form of modular, reusable
simulation template libraries (see CHAL-015). Overall, SEs and domain engineers need
to be able to retrieve specific versions of models from previous designs and from
simulation template libraries, and to modify and store new versions of models.

• Versioning Control of Analysis/Simulation Sets: multiple analyses or simulations may be
performed on a given version of the design models and the system model. For example, a

 5

simulation may be performed using different sets of inputs, selecting different
computation models, or selecting different system configurations. SEs need to be able to
store the entire set used for an analysis/simulation run to be able to retrieve it and
reproduce the results at any time.

Also related to versioning control is the need to capture “snapshots” of the overall system. At key
points of the project lifecycle, a snapshot of all the information is used to hold a review and assess
the readiness to move to the next phase. This snapshot will be composed of the artifacts listed
above at their current version at the time the snapshot. Hence, SEs need a mechanism to create
such a snapshot and “tag” it for future retrieval (similar to the way software developers can tag a
group of independently versioned files in CVS).

• CHAL-013: Traceability of requirements: at each level of system resolution, SEs need to relate
the overall system’s requirements to specific (and - particularly as the project detail grows –
quantifiable) goals and constraints on subsystems and their parameters. Conversely, SEs should be
able to trace the goals and constraints of a particular subsystem up to the original requirements
they are realizing. For example, a high level requirement for a given system may be: “shall operate
at temperatures of up to 100 F”. This requirement may translate into several requirements for a
leaf-level component like a printed circuit board (PCB), one of which may be “the deformation at
the midpoint of the PCB shall be less than 0.001 inch at 100 F”. A SE should be able to determine
at any time if an arbitrarily deep subsystem (in our example, the PCB) satisfies the system
requirements mapped to it. Current requirements management tools allow users to capture
requirements in a central database and even linking these requirements to objects in other tools
(such as design tools), but do not currently provide a generalized mechanism for automatically
(and continuously) validating these requirements (directly from the design tools, or based on
diverse analysis/simulation results).

• CHAL-014: Workflow: a model of the system provides a global definition of how the subsystems
in a system are composed together and how their parameters are related and constrained. It does
not, however, explicitly indicate the sequence of steps to populate (determine the values of the
parameters of) the system; that is, which parameters (and in what order) should be provided as
inputs, which selections should be made (and when), and which relations will be solved (and in
which direction). For complex systems, the number of possible combinations of all these may
grow unwieldily large. In some cases, however, experience has identified a specific sequence of
steps (or workflow) to successfully populate a particular system. Test scenarios could also be
captured as workflows (as in “given a specific sequence of inputs, this are the outputs we expect”).
For these cases, it would be valuable for a CEE system to provide a capability for capturing and
executing these workflows.

• CHAL-015: Modularity and reusability: large systems are rarely modeled completely from
scratch. Some components are similar from one project to another, and hence there is always some
level of reusability that occurs. This situation exists for many types of models (e.g., requirements
patterns, simulation methods, geometric design features, off-the-shelf hardware, and so on). It
occurs more frequently with fundamental, general-purpose building blocks (for example, a
fundamental analytical concept such as a 1-D Linear Elastic Material Model), but it may also
occur with larger, pre-assembled purpose-specific subsystems. For example one study on airframe
structural analysis estimates there are several hundred reusable generic analytical concepts (for
structural analysis in general) and on the order of 10,000 airframe-specific structural analysis
templates [Peak, 2003]. CEE systems should provide the ability to define modular, reusable
system components (namely, subsystems and relations) and store them in libraries, so than can be
used as building blocks for building other systems.

3.2 Desired Capabilities of a CEE System
This section describes the desired capabilities of an envisioned CEE System to address the CEE Challenges
and Needs listed in the previous section. These capabilities are realized by the use cases represented in the
UML Use-Case diagram in Figure 14 (page 17). Table 2 at the end of the section (page 18) summarizes the

 6

capabilities that address each challenge listed, and Table 3 (page 19) summarizes the use cases that realize
these capabilities.

A CEE System should provide:

• CAP-001: End-user tools for collaborative Systems Engineering: to allow a team of SEs to
collaboratively create, edit and navigate system models. As illustrated in Figure 2, this includes
defining the subsystems within the system, system public and private parameters, parameter constraints,
relations between and within subsystems, relations between parameters and connections with external
authoring or analysis tools. It should also include the ability to formally delegate the detailed modeling
of a subsystem to another member of the team - defining the boundary conditions (required parameters,
constraints on parameters, inputs, etc.) within which the other member shall model the subsystem- and
the ability to view the details of the systems designed by other members of the team (subject to
appropriate permissions). These tools should be preferably graphical, but should also support
alternative ways to define the system for varying user skill levels. For example, lexical editors for
advanced users, graphical tools like SysML parametric diagram editors for intermediate users (ala
electrical schematics), and model-based diagrams and domain-specific user interfaces for novice users.

To make such a model-based approach efficient, the tools should include reference model libraries of
COTS components and previous design solutions. This will allow SEs to develop system models more
efficiently by re-using the knowledge stored in composable reference models. (A reference model is a
structured container of information about a component or sub-system which includes models of the
structure, the function and behavior of the component) [Paredis, 2001].

Figure 2: A System Model of a Car (using SysML notation 2)

• CAP-002: A common graphical notation for modeling and simulating systems: A common
(preferably standard) way to graphically describe the interfaces between systems to facilitate inter-
discipline communication and understanding of the inter-connections between systems, while at the

2 The SysML notations used in this document roughly correspond to SysML draft v0.9 plus more recent updates and
experimental variations. We intend to update these examples with the final official notation when SysML v1.0 becomes
available.

 7

same time allowing each discipline to use and maintain their own preferred graphical notations
independently. Figure 2 above shows a representation of a system using SysML [SysML].

• CAP-003: Constructs for modeling complex system relations: to allow SEs to model the wide range
of interconnections (or relations) that may occur in a system. Among the constructs this toolset should
include are the following (Figure 3 illustrates each of these constructs3):

• Formula-based relations: for defining relations between parameters that can be expressed as an
equation (algebraic or otherwise, including equalities and inequalities)

• Equality relations: a special case of formula-based relation (the simplest) for defining when the
value of a parameter must be equal to the value of another parameter anywhere else (either in the
same or in another system).

• Constraint relations: a special type of formula-based relation defined on one parameter used to
constraint its value.

• Aggregate relations: for defining operations on parameters that are aggregates instead of single-
valued (e.g., to obtain the average, minimum, maximum value).

• Buffered relations: for defining relations among parameters that allow one or more parameters to
vary within a certain range before affecting associated parameters. The goal of this type of
interconnection is to reduce the “brittleness” (i.e., the susceptibility of a system to be impacted by
changes in another system) of a system.

• Selectors: similar to switches in an electrical circuit; used for defining alternative interconnections
whose selection is based on certain predefined conditions (e.g., logical conditions such as “if the
value of “a” in subsystem A is greater than 10, then connect it to “b” in subsystem B, otherwise
connect it to “c” in subsystem C”) or user choice at run time. These interconnections are also
known as higher order relations.
 This construct is particularly useful for capturing models of multiple levels of fidelity. For
example, a model of a flap link may define two cross sections of the flap link: a simplified and a
detailed one. During a preliminary stress analysis, analyst may want to choose the simplified cross
section to perform the analysis, but later in a more detailed analysis he may want to choose the
detailed cross section to obtain more accurate results.

• Breakers: similar to traditional breakers in an electrical circuit; connections that can be
automatically or manually “deactivated” when certain conditions occur. Breakers may be treated
as a special type of selector.

• Black-box relations: for defining relations whose details, solution algorithms and execution
method are encapsulated in an external block of executable code or an external software tool
accessible via an API. Here, the relation should only define what the parameters involved are and
any connection parameters needed to “talk” to the external software component. Examples of this
type of relations are finite-element analyses, external software components (SOAP web services,
Java APIs, COM components), and humans (largely based in heuristics and experience and that
have not been captured in computable form - what we have come to call “Ask Bob” relations).

• Unidirectional relations: Relations should be generally considered as multidirectional (that is,
non-causal—the input/output direction is not specified in advance) to allow for multiple execution
routes of the same system graph and enable model reusability for different scenarios. However,
there are cases where relations are inherently causal (i.e., they cannot run in multiple directions) so
the system should also provide a construct to support this special case that we denote as
unidirectional.

In addition, these constructs should also provide support for capturing uncertainty of a relation and/or
probabilistic distributions of the input variables to allow the calculation of uncertainty of the values
calculated.

3 For simplicity, relations in this figure are shown exclusively between two systems (A and B) and involving a minimal
number of parameters, but they could also occur inside one system, or among more than two systems, and involve any
number of parameters.

 8

System ASystem A System BSystem B

a10 b9

a1 b1

a2

a3 b2

a4

a5[i] b3

a6 b4

a7 b5

b6

if a7 <= 10

if a7 > 10

a8 b7while a8 <= 50

a9 b8

b1 = a1 + a2

a4 < 100

b3 = AVG(a5)

if (a6 <= 250) b4 = 250
if (250 < a6 < 300) b4 = 300
if(a6 > 300) b4 = a6

formula-based

equality

constraint

aggregate

buffered

selector

breaker

black-box

unidirectional
Figure 3: System Relations Types

• CAP-004: End-user tools to visualize the complex interconnections in a system: to allow users to
quickly assess the impact of any changes they make (to design models, system models, relations, etc.)
to the rest of the system and take corrective measures if needed. For example, Figure 4 illustrates a
change in a design model (a change inside the Braking subsystem). Here, a user should be able to
quickly assess the impact of changing something in the design model (say, the diameter of the sleeve
of the flap link shown). In this example, the value of the parameter “car6” changes to 12.5 as a result of
this Braking subsystem change. The user should also be able to see the effect of this change anywhere in
the system. This ability should not be restricted to changes in design models, but should ideally
consider changes in any part of the system (system models, relations, constraints, etc.).

 9

Car

: Power

pow1

pow2

pow3

pow4

: Electrical
ele1

ele2

ele3

ele4

ele5

: Braking

brake1

brake2

brake3

brake4

brake5

brake6

brake7

car1

car2

car3

car4

car5
«paramConstraint»

: CarRelation1

cr1

cr2

cr3

«paramConstraint»
: ReusableRelation1

rr1

rr2

rr3
car6

car7

car8

car9

: Transmission
trans1

trans2
trans6

trans5

trans4
trans3

: Power

pow1

pow2

pow3

pow4

pow1

pow2

pow3

pow4

: Electrical
ele1

ele2

ele3

ele4

ele5

ele1

ele2

ele3

ele4

ele5

: Braking

brake1

brake2

brake3

brake4

brake5

brake6

brake7

brake1

brake2

brake3

brake4

brake5

brake6

brake7

car1

car2

car3

car4

car5
«paramConstraint»

: CarRelation1

cr1

cr2

cr3

cr1

cr2

cr3

«paramConstraint»
: ReusableRelation1

rr1

rr2

rr3

rr1

rr2

rr3
car6

car7

car8

car9

: Transmission
trans1

trans2
trans6

trans5

trans4
trans3

trans1

trans2
trans6

trans5

trans4
trans3

100.1

5

false

5.67

90

43.2

3.63
12

??

If I change something here…If I change something here…

3.78
12.5

??

3.78
12.5

??

I can see how results change…I can see how results change…

Figure 4: Impact of a Change in a System Model

Another desired feature is to be able to visualize the margin or “slack” of a system model (Figure 5);
that is, what can be changed (and to what extent) in a subsystem without impacting the rest of the
system.

System A System B

a1 b1

a2
Regular rel.

r1

Buffered rel.
r1 r2

r2

c1

System C

No Slack
(~”critical path”)

Some Slack

Figure 5: Slack in a System

• CAP-005: An approach to manage consistency of shared parameters throughout the project
lifecycle: early in the project, subsystem leads may agree that their subsystems share a parameter. They
may also agree on constraints on its value. For example, as illustrated in Figure 6(a), the leads of
subsystems A and B may agree to share the weight of Subsystem A (indicated by a line connecting
parameters weight in Subsystem A and weight-a in Subsystem B), and that its value must not exceed 100 lb.
Once this agreement is made, each subsystem lead may proceed to add detail to his or her subsystem,
possibly redefining the way a shared parameter is calculated. For example, continuing with our
example of Figure 6, in (b), the weight of Subsystem A is now calculated using a relation (r1) with input

 10

from a solid model and other subsystem data. The risk now is that someone may make a change to the
solid model (say, a design engineer using a CAD tool) that will increase the weight of Subsystem A
above 100 lb, therefore “breaking” the agreement between subsystems A and B and potentially
requiring costly rework of Subsystem B. Complicating the matter, as the system becomes more complex
the number of parameters affecting the weight may increase, while at the same time becoming farther
removed from the actual shared parameter (in other words, the number of intermediate relations
between the affecting parameters and the shared parameter becomes larger). To control this situation,
the CEE system must provide a way to constantly check that these “agreements” among subsystem are
not being broken whenever a change is made, and if they must be broken, aid in the determination of
what needs to be done as a result.

System A System B

weight weight-a

(a)

System A System B

weight weight-a

(b) r1

“must be less than 100 lb”

“must be less than 100 lb”

Figure 6: Maintaining Consistency of Shared Parameters

CAP-006: A versioning and configuration control mechanism (and related end-user tools): to enable
independent fine-grained versioning of design models, system models, computation models, and
analysis/simulation sets, a well as the shared parameters and relations among such models. Figure 7
illustrates versioning of system models, where the model of the Car system is versioned independently
from the contained systems (Braking, Power, Electrical and Transmission) as indicated by the version
numbers in parenthesis. Figure 8 illustrates the versioning of a design model (the CAD model of a flap
link in the lower left corner, labeled “Design Model V3.7”), a simulation set (labeled “Simulation Set
#123”), and a computation model (the relation “ABS Relation1” labeled “Computation Model V1.4”).
The figure also illustrates a specific set of inputs and outputs (arrows coming into and out of the car
system, respectively) for that specific combination of item versions. The mechanism for versioning
simulation sets should allow users to capture everything that was selected to run the simulation, so that
the simulation can be retrieved at any time and re-run to obtain comparable outputs. This includes the
versions of the system model and design models, the input values, and any run-time selections
available (for example, where several analysis models with different levels of fidelity are available to
solve for the same parameters).

 11

Car (V10.2)

v4.5 : Power

pow2

pow4

pow1
pow3

v5.0 : ReusableRelation1rr1

rr2

rr3

v5.3 : Transmissiontrans1 trans4

trans3trans2

trans5 trans6

v4.0 : Electrical

ele4

ele2

ele3ele1

ele5
v2.9 : CarRelation1

cr2

cr3

cr1

car1

car2

car3

car4

car5

car6

car7

car8

car9

v1.6 : Braking brake9

brake6

brake5

brake10

brake4

brake1

brake3

brake8

brake2

brake7

v4.5 : Power

pow2

pow4

pow1
pow3

pow2

pow4

pow1
pow3

v5.0 : ReusableRelation1rr1

rr2

rr3

rr1

rr2

rr3

v5.3 : Transmissiontrans1 trans4

trans3trans2

trans5 trans6

trans1 trans4

trans3trans2

trans5 trans6

v4.0 : Electrical

ele4

ele2

ele3ele1

ele5

ele4

ele2

ele3ele1

ele5
v2.9 : CarRelation1

cr2

cr3

cr1
cr2

cr3

cr1

car1

car2

car3

car4

car5

car6

car7

car8

car9

v1.6 : Braking brake9

brake6

brake5

brake10

brake4

brake1

brake3

brake8

brake2

brake7

brake9

brake6

brake5

brake10

brake4

brake1

brake3

brake8

brake2

brake7

Figure 7: Version Control of a System Model

100.1

3.33

43.2

10
100.1

Analysis
Tool

Solver

ABS

abs1

abs2

abs3

abs4

abs5

«paramConstraint»
: ABSRelation1

absr1-1

absr1-2

absr1-3

absr1-4

: ABSAnalysisTemplate1

ana2

ana1

ana3

ana4
: ABSProductModel

pm1

pm4

pm2
pm3

abs6

abs1

abs2

abs3

abs4

abs5

«paramConstraint»
: ABSRelation1

absr1-1

absr1-2

absr1-3

absr1-4

absr1-1

absr1-2

absr1-3

absr1-4

: ABSAnalysisTemplate1

ana2

ana1

ana3

ana4ana2

ana1

ana3

ana4
: ABSProductModel

pm1

pm4

pm2
pm3pm1

pm4

pm2
pm3

abs6
Design Model V3.7Design Model V3.7

System Model V5.6System Model V5.6

Simulation
Set #123

true

Computation Model V1.4

Figure 8: Versioning various aspects of a System Model

The versioning and configuration control mechanism should also provide “tagging” functionality
(similar to the one provided by software versioning control systems such as CVS) to tag an arbitrary
set of configuration-controlled artifacts for later retrieval. For example, at the end of Phase B in a
NASA project all the system artifacts could be tagged as “PDR Version” (the version submitted to
Preliminary Design Review”). The artifacts themselves may have different, independent versions
(much like individual files tagged with the same tag may have different versions in CVS).

The versioning and configuration control mechanism should also provide the appropriate check
in/check out logic to ensure consistency when a system is revised. To illustrate this, let’s consider the
simple example in Figure 9: two subsystems (System A.1 and System A.2) are part of a larger system
(System A). Assume that at the beginning they are all at version 1.0. If someone creates a new version
of System A.1 (version 2.0) and wants this version to be used in System A, then the owner of System A
needs to check out System A and revise it to use version 2.0 of System A.1. If there are any

 12

inconsistencies introduced by the new version of System A.1, they need to be resolved at this point
(revising any of the systems to accommodate the changes). In our example, the change made to System
A.1 does not introduce any inconsistency (only a new parameter - a12 - was added that will be used at
the System A level later) and therefore a revision of System A to reflect the use of version 2 of System
A.1 is sufficient (that is, no changes are needed in System A.2). The idea is that we want to prevent the
owner of System A.1 from simply “pushing” the new version and potentially breaking the consistency
of System A. In general, in order to use a new version of a system that has changes in functionality, the
containing systems (and potentially the connected systems too) need to be checked out and revised as
well.

System A (v1.0)

System A.1 (v1.0) System A.2 (v1.0)

a11 a21
r1

System A (v2.0)

System A.1 (v2.0) System A.2 (v1.0)

a11 a21
r1

a12

Figure 9: Versioning and Consistency

• CAP-007: The ability to create libraries of reusable components: to allow users to utilize and add

these reusable components when building other systems. This functionality is particularly useful to
capture commonly used analysis templates. Figure 10 illustrates such an application, where the 1D
Linear Elastic Model system is used twice in the Extensional Rod and Torsional Rod systems (which in turn
can be used in larger systems – not shown). This capability could be expanded beyond reusable
analysis templates up to entire reusable systems that can be used as building blocks when composing
larger systems. There also needs to be a way to capture the assumptions and constraints under which
these reusable systems can be used (see CAP-008). It is important to include enough information about
the component and its internal functioning to allow someone considering reusing it to determine that
the component indeed works for the application it is intended. Only when people “trust” and
understand a component will they be likely to reuse it in their models.

 13

Material Model ABB

Continuum ABBs

modular
re-usage

E

α

One D Linear
Elastic Model

∆T

σ

τ

ν

γ

G

ε

εe

εt

material model

polar moment of inertia, J
radius, r

undeformed length, Lo

twist, ϕ

theta start, ϕ1

theta end, ϕ2

r1

12 ϕϕϕ −=

r3

0L
rϕγ =

J
rTr

=τ

torque, Tr

x
TT

G, r, γ, τ, φ, φ1, φ2 ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation, ∆L

length, L

start, x1

end, x2

E

α

One D Linear
Elastic Model

(no shear)

∆T

εσ

εe

εt

r1

12 xxL −=

r2

oLLL −=∆

r4

A
F

=σ

edb.r1

oTTT −=∆

r3

L
L∆

=ε

x
FF

E, A, α

∆LLo

∆T, ε , σ

y
L

Torsional Rod

Extensional Rod

temperature change, ∆T

cte, α

youngs modulus, E

stress, σ

shear modulus, G

poissons ratio, ν

shear stress, τ shear strain, γ

thermal strain, εt

elastic strain, εe

strain, ε

r2

r1)1(2 ν+
=

EG

r3

r4Tt ∆= αε

Ee
σε =

r5

G
τγ =

te εεε +=

σ

ε

1D Linear Elastic Model

Figure 10: Analysis Building Blocks (ABBs) as Reusable System Components

• CAP-008: Ability to capture the assumptions, rationale and limitations of a model: to allow users to
determine under which conditions it is appropriate to use the model (this is particularly important for
low-fidelity models) and for enabling the automatic selection of valid models or reusable subsystems.
For example, a given relation may only be valid for a certain range of values of one of its inputs.
Another example is a subsystem (for example, one that represents a material model) that is best used
for preliminary design (because is fast but approximate) versus another one that is best used for
detailed design (because is computationally expensive, but accurate).

• CAP-009: Simulation orchestration: to allow users to run simulations (and view the results) of the
behavior of a system (or any of its subsystems in isolation) and perform what-if scenarios under
arbitrary input conditions. The connection to and execution of any underlying analysis or solver tools
required to obtain output values should be transparent to the user running the simulation. The idea is
that although domain and tool experts will still be required to set up a simulation, anyone in the team
should be able to execute the simulation. Figure 11 illustrates a simulation set at the Car system level,
where inputs are shown as incoming (red) arrows and outputs as outgoing (blue) arrows. Figure 12
illustrates the same simulation running within a lower-level subsystem (ABS) and how external
modeling and solving tools are involved (“Design Tool” is used to retrieve some of the “pm” parameters
in the “ABSProductModel” block, “Analysis Tool” is used to solve for some of the “ana” parameters in the
“ABSAnalysisTemplate1” block, and “Solver” is used for some of the “absr1” parameters in the
“ABSRelation1” relation).

 14

Car

: Power

pow1

pow2

pow3

pow4

: Electrical
ele1

ele2

ele3

ele4

ele5

: Braking

brake1

brake2

brake3

brake4

brake5

brake6

brake7

car1

car2

car3

car4

car5
«paramConstraint»

: CarRelation1

cr1

cr2

cr3

«paramConstraint»
: ReusableRelation1

rr1

rr2

rr3
car6

car7

car8

car9

: Transmission
trans1

trans2
trans6

trans5

trans4
trans3

: Power

pow1

pow2

pow3

pow4

pow1

pow2

pow3

pow4

: Electrical
ele1

ele2

ele3

ele4

ele5

ele1

ele2

ele3

ele4

ele5

: Braking

brake1

brake2

brake3

brake4

brake5

brake6

brake7

brake1

brake2

brake3

brake4

brake5

brake6

brake7

car1

car2

car3

car4

car5
«paramConstraint»

: CarRelation1

cr1

cr2

cr3

cr1

cr2

cr3

«paramConstraint»
: ReusableRelation1

rr1

rr2

rr3

rr1

rr2

rr3
car6

car7

car8

car9

: Transmission
trans1

trans2
trans6

trans5

trans4
trans3

trans1

trans2
trans6

trans5

trans4
trans3

100.1

5

false

5.67

90

43.2

100.1

5

false

5.67

90

43.2

3.33
10

??

3.33
10

??

Figure 11: System Simulation

100.1

43.2

100.1

100.1

43.2

100.1

Analysis
Tool

Solver

ABS

abs1

abs2

abs3

abs4

abs5

«paramConstraint»
: ABSRelation1

absr1-1

absr1-2

absr1-3

absr1-4

: ABSAnalysisTemplate1

ana2

ana1

ana3

ana4
: ABSProductModel

pm1

pm4

pm2
pm3

abs6

abs1

abs2

abs3

abs4

abs5

«paramConstraint»
: ABSRelation1

absr1-1

absr1-2

absr1-3

absr1-4

absr1-1

absr1-2

absr1-3

absr1-4

: ABSAnalysisTemplate1

ana2

ana1

ana3

ana4ana2

ana1

ana3

ana4
: ABSProductModel

pm1

pm4

pm2
pm3pm1

pm4

pm2
pm3

abs6
Design

Tool

3.33

10

true

3.33

10

true

Figure 12: External Software Tools in a System Simulation

In addition, the system should also support simulation scenarios where some of the parameters have
not yet been calculated (say, because they come from other subsystems that are still in work), or cannot
be calculated until the system is assembled together. This is particularly important to allow
independent unit-testing for systems that are being developed in parallel.

• CAP-010: Requirements allocation and traceability: to allow users to allocate system requirements
(quantitative or otherwise) to the components of the system implementing those requirements. To that
end, the system should provide users the ability to translate higher level requirements into more
specific requirements and keep the traceability between them. The system should also allow users to
graphically assess conformance to requirements as they are selecting design alternatives or making

 15

changes to their systems. Conversely, users should be able to assess what parts of the system will be
affected if something does not perform according to specs (for example, if a parameter value is outside
a specified valid range).

• CAP-011: The ability to create and execute workflows: to allow users to specify the sequence of steps
that should be followed to populate the parameters of interest in a system. As illustrated in Figure 13,
the idea is that users would “run” the model of a system through a workflow, which would walk the
user through the sequence of inputs and decisions that need to be made (based on intermediate results,
for example) in order to populate these parameters. As the model advances through the workflow, it
becomes more and more defined, until all the parameters of interest are populated at the end of the
workflow. The CEE system should provide the capability for defining, storing, and executing
workflows.

Car

: Power

pow1

pow2

pow3

pow4

: Electrical
ele1

ele2

ele3

ele4

ele5

: Braking

brake1

brake2

brake3

brake4

brake5

brake6

brake7

car1

car2

car3

car4

car5
«paramConstraint»

: CarRelation1

cr1

cr2

cr3

«paramConstraint»
: ReusableRelation1

rr1

rr2

rr3
car6

car7

car8

car9

: Transmission
trans1

trans2
trans6

trans5

trans4
trans3

: Power

pow1

pow2

pow3

pow4

pow1

pow2

pow3

pow4

: Electrical
ele1

ele2

ele3

ele4

ele5

ele1

ele2

ele3

ele4

ele5

: Braking

brake1

brake2

brake3

brake4

brake5

brake6

brake7

brake1

brake2

brake3

brake4

brake5

brake6

brake7

car1

car2

car3

car4

car5
«paramConstraint»

: CarRelation1

cr1

cr2

cr3

cr1

cr2

cr3

«paramConstraint»
: ReusableRelation1

rr1

rr2

rr3

rr1

rr2

rr3
car6

car7

car8

car9

: Transmission
trans1

trans2
trans6

trans5

trans4
trans3

trans1

trans2
trans6

trans5

trans4
trans3

Workflow step (an action, e.g., “assign value of x, y and z”)

Decision (e.g., “select material model”)

System model instance advancing to next step of the workflow

Workflow start

Workflow end

Figure 13: Workflow

• CAP-012: Ability to support trade studies: the system should provide the basic constructs and user
interface to support the trade-study process described in CHAL-007 (Information-intensive trade
studies) to capture multiple plausible alternatives and to select the “best” one to meet the goals and
objectives of the system. It should allow users to model the system goals, objectives and constraints,
outcome variables, measurement methods (mathematical models, information queries to external tools,
etc.) and selection rules (selection algorithm or workflow). The system should then aid the user in
identifying plausible alternatives (alternatives that meet the goals, or that are in the “solution space”)
and selecting the best alternative based on the selection rules.

 16

Systems
Engineer
(Lead or

Contributor)

Reusable
System
Creator

UC-100
Model System

UC-110 Model
System Properties

UC-120 Add
Subsystems

UC-130 Add
Subsystem
Properties

UC-121 Add
Reusable Analysis

System

UC-122 Delegate
Subsystem

UC-140 Add
System Relations

UC-160 Defire
Requirement
Associativities

UC-150 Model
Reusable Analysis

System

UC-200 Simulate
System

UC-210 Define
Input Values

UC-220 Run
Simulation

UC-230 View
Simulation Results

UC-202 Dynamic
Simulation

UC-201 Static
Simulation

UC-300 Manage
Item Versioning

and Configuration

UC-301 Manage
System Model
Versioning and
Configuration

UC-302 Manage
Design Model
Versioning and
Configuration

UC-303 Manage
System Relation
Versioning and
Configuration UC-304 Manage

Simulation Set
Versioning and
Configuration

UC-310
Check-in Item

UC-311 Notify
Affected Items

UC-320
Check-out Item

UC-330 Tag
Item

UC-400 Create
and Execute
Workflows

UC-500 Perform
Trade Studies

UC-501 Model
System's Goals,

Objectives &
Constraints

UC-502 Model
Outcome Variables and
Measurement Methods

UC-503 Model
Selection Rule

UC-504 Identify
Plausible

Alternatives

UC-505 Select
Alternative

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«extend»

«extend»

v1

v2

v3

v4

Figure 14: CEE System Use-Case Diagram

 17

Table 2: CE Challenges and CEE System Desired Capabilities

Challenges Capability(ies) Addressing Challenge

CHAL-001 (Complex team dynamics)

CAP-001 (End-user tools for collaborative Systems
Engineering)

CAP-002 (Common graphical notation for modeling and
simulating systems)

CAP-005 (An approach to manage consistency of shared
parameters throughout the project lifecycle)

CHAL-002 (Lack of end-user tools for
collaborative Systems Engineering)

CAP-001 (End-user tools for collaborative Systems
Engineering)

CHAL-003 (Multidisciplinary)

CAP-001 (End-user tools for collaborative Systems
Engineering)

CAP-002 (Common graphical notation for modeling and
simulating systems)

CAP-005 (An approach to manage consistency of shared
parameters throughout the project lifecycle)

CHAL-004 (Focus shift over the project’s
lifecycle)

CAP-005 (An approach to manage consistency of shared
parameters throughout the project lifecycle)

CAP-006 (Versioning and configuration control mechanism)

CHAL-005 (Complex information
interconnections)

CAP-003 (Constructs for modeling complex system relations)

CAP-004 (End-user tools to visualize the complex
interconnections in a system)

CHAL-006 (Multiple system Views)
CAP-003 (Constructs for modeling complex system relations)

CAP-004 (End-user tools to visualize the complex
interconnections in a system)

CHAL-007 (Information-intensive trade studies)

CAP-012 (Ability to support trade studies)

CAP-003 (Constructs for modeling complex system relations)

CAP-007 (Ability to create libraries of reusable components)

CAP-009 (Simulation orchestration)

CAP-011 (Ability to create and execute workflows)

CHAL-008 (Uncertainty) CAP-003 (Constructs for modeling complex system relations)

CHAL-009 (Capturing Design Decisions and
Rationale) CAP-006 (Versioning and configuration control mechanism)

CHAL-010 (Capturing assumptions and
applicability of models)

CAP-008 (Ability to capture the assumptions, rationale and
limitations of a model)

CHAL-011 (Variety of software tools and
information standards)

CAP-003 (Constructs for modeling complex system relations)

CAP-009 (Simulation orchestration)

CHAL-012 (Multiple dimensions of versioning
control) CAP-006 (Versioning and configuration control mechanism)

CHAL-013 (Traceability of requirements) CAP-010 (Requirements allocation and traceability)

CHAL-014 (Workflow) CAP-011 (Ability to create and execute workflows)

 18

Challenges Capability(ies) Addressing Challenge

CHAL-015 (Modularity and Reusability) CAP-007 (Ability to create libraries of reusable components)

Table 3: CEE Use Cases

Desired Capability Use-Case(s) realizing Capability

CAP-001 (End-user tools for collaborative Systems
Engineering) UC-100 (Model System) (and related use cases)

CAP-002 (Common graphical notation for modeling and
simulating systems) UC-100 (Model System) (and related use cases)

CAP-003 (Constructs for modeling complex system
relations) UC-140 (Add System Relations) (and related use cases)

CAP-004 (End-user tools to visualize the complex
interconnections in a system) UC-140 (Add System Relations) (and related use cases)

CAP-005 (An approach to manage consistency of shared
parameters throughout the project lifecycle)

UC-140 (Add System Relations) (and related use cases)

UC-300 (Manage Item Model Versioning and Configuration) (and
related use cases)

CAP-006 (Versioning and configuration control
mechanism)

UC-300 (Manage Item Model Versioning and Configuration) (and
related use cases)

CAP-007 (Ability to create libraries of reusable
components) UC-150 (Model Reusable Analysis System)

CAP-009 (Simulation orchestration) UC-200 (Simulate System) (and related use cases)

CAP-010 (Requirements allocation and traceability) UC-160 (Define Requirements Associativities)

CAP-011 (Workflow) UC-400 (Create and Execute Workflows)

CAP-012 (Ability to support trade studies) UC-500 (Perform Trade Study) (and related use cases)

3.3 CEE System Design Considerations
The following is a list of design considerations – beyond the ones imposed by the above functional
capabilities - of CEEs that should be taken into account (and properly scoped) when designing a CEE
system:

• Solving speed required
• Size and complexity of systems being developed
• Number of users
• Security requirements
• Scalability
• Maintainability
• Configurability

Given the same desired capabilities, different values for these considerations will generally result in
different CEE systems (and possibly different CEE system architectures). For example, a CEE system for
designing commercial products within a single small company will look quite different compared to a CEE
system for designing classified systems among large primes and their subcontractors.

 19

4 Envisioned COB/MRA-based CEE Methodology

4.1 Envisioned Next-Generation CEEs

4.1.1 Overview
Our envisioned CEE methodology to address the above challenges involves two new CEE System
components (Figure 15): 1) a Composable Object (COB) Management System (CMS), and 2) a software
development platform, termed COB Platform, on top of which a CMS and other applications are built. This
approach embodies the COB Representation that leverages constraint graph and object-oriented concepts to
enable micro-level associativity among diverse models. This technology provides infrastructure services
and algorithms (constraint meta-solving, tools-access orchestration, etc.) that bring together best-of-breed
modeling, design, and analysis tools into a collaborative modeling and simulation (M&S) environment. It
leverages SysML as a unifying graphical nomenclature for end users to compose federated simulations by
connecting diverse model components via fine-grained relations.

The services this platform provides — embodied in CMS — can be coupled with existing enterprise CEE
systems (like the NASA ESMD4 Windchill-based CEE) or used to support next-generation localized
environments (e.g., going beyond parameter-exchange servers like ICEMaker [Kevin 2003] or parametric
modeling orchestrators like Phoenix Integration ModelCenter). Engineers employ SysML graphical
modeling inside COB Platform-based applications to create new components and leverage reusable
building blocks. In this way system and domain engineering teams collaboratively model, navigate, and
simulate systems more intuitively and better visualize and manage their complex interdependencies.
Figure 15 shows the high-level architecture of the proposed COB Platform and CMS. The COB Platform is
composed of a set of COB Services and a COB Software Development Toolkit (SDK), with the COB
Representation shown along their side as their conceptual foundation. The CMS — developed using the
COB SDK — is the deployable embodiment of the COB Platform, and comprises COB Server
Components and COB Management Client Tools. The CMS is itself a stand-alone COB-enabled
application and provides the basic functionality and end-user tools for authoring and executing COB graphs.

Focusing on the COB Platform portion of the figure, the COB Representation is a constraint graph- and
object-based knowledge representation developed by our team at the Georgia Institute of Technology (GIT).
It provides the conceptual foundation for the COB Platform, as it defines the underlying information model
and algorithms for implementing the COB SDK and COB Services. Section 4.2 provides an overview of
GIT work to date on the COB Representation and the related design pattern, the Multi-Representation
Architecture, that provides modular, reusable simulation template technology.

End-user tool developers use the COB SDK to build applications that leverage these services. The COB
SDK provides a class library, UI components, development tools, proxies to access the COB Services,
samples, documentation, and wrappers for some commonly-used external tools.

The COB Services provide the base functionality to help applications benefit from the use of constraint
graphs as their underlying data representation model. These services include:

• COB Graph Management Services: for managing the lifecycle (creation, meta-solving,
persistence, disposal) of COBs and COB graphs.

• COB Versioning Control Services: for controlling the versioning of COBs, including check in
and check out, tagging, etc.

• COB Persistence Services: for storing and retrieving COBs to and from a persistent store
(database).

• COB Workflow Services: for creating, executing and monitoring workflows that involve
COBs undergoing state changes as they advance through their steps.

• COTS Access Services: for accessing external tools to retrieve or solve for data.

4 ESMD = Exploration Systems Mission Directorate (http://exploration.nasa.gov/)

 20

http://exploration.nasa.gov/

COB Services Access Proxies (SOAP, JMS, …)
COB SDK

COB Services

COTS AccessCOB Workflow COTS AccessCOB Workflow

C
O

B
 R

ep
re

se
nt

at
io

n

COB Graph Management COB Versioning ControlCOB Graph Management COB Versioning Control

Class Library Dev Tools Samples DocumentationUI Components

COB Management System (CMS)

COB
Store

COB
Server

Manager

Tool Wrappers

COB Authoring COB Configuration
Management

COB Browsing

COB Persistence

COB Management Client Tools

COB Server Components
C

O
B

 P
la

tfo
rm

*

*

**

* = These subsystems are “lightweight” in stand-alone mode and “full-featured in coupled mode* = These subsystems are “lightweight” in stand-alone mode and “full-featured in coupled mode

Figure 15: COB Platform and CMS High-Level Architecture

Some of these services are denoted in Figure 15 as “lightweight”, meaning that they provide limited basic
functionality in the case of the stand-alone deployment of CMS (CMS deployment is discussed later in this
section). More complete functionality is achieved when the CMS is coupled with corresponding dedicated
systems (such as a PLM systems, workflow engines, database management systems, or interoperability
middleware).

Table 4 below lists the COB Platform components and the capabilities (from Section 3.2) enabled by each.

Table 4: CEE Capabilities Implemented by Each COB Platform Component

COB Platform Component Enabled CEE Capability(ies)

COB SDK Exposes the COB Services that implement the capabilities

CMS Management Client Tools
CAP-001 (End-user tools for collaborative Systems Engineering) (enables their development)

CAP-004 (End-user tools to visualize the complex interconnections in a system)

COB Graph Management Services

CAP-001 (End-user tools for collaborative Systems Engineering) (enables their development)

CAP-002 (Common graphical notation for modeling and simulating systems) (provides
support for exchanging data with system modeling tools)

CAP-003 (Constructs for modeling complex system relations)

CAP-004 (End-user tools to visualize the complex interconnections in a system) (enables their
development)

CAP-005 (Approach to manage consistency of shared parameters throughout the project
lifecycle)

CAP-007 (Ability to create libraries of reusable components)

CAP-008 (Ability to capture the assumptions, rationale and limitations of a model)

 21

COB Platform Component Enabled CEE Capability(ies)

CAP-009 (Simulation orchestration)

CAP-010: Requirements allocation and traceability

COB Versioning Control Services
CAP-006 (Versioning and configuration control mechanism)

CAP-007 (Ability to create libraries of reusable components)

COB Persistence
CAP-006 (Versioning and configuration control mechanism)

CAP-007 (Ability to create libraries of reusable components)

COB Workflow CAP-011: The ability to create and execute workflows

COTS Access Services CAP-009 (Simulation orchestration)

Table 2 is reproduced as Table 5, with a new column indicating which COB Platform component
implements each capability. This table shows the path from the challenges listed in Section 3.1 in the first
column, through the capabilities that address each challenge (Section 3.2) in the second column, to the
COB Platform components that support these capabilities in the third column.

Table 5: COB Platform Components Implementing Each CEE Capability

Challenge Capability(ies) Addressing Challenge COB Platform Component
Implementing Capability

CAP-001 (End-user tools for collaborative
Systems Engineering)

CMS Management Client Tools

COB Graph Management Services
(enables their development)

CAP-002 (Common graphical notation for
modeling and simulating systems) COB Graph Management Services CHAL-001 (Complex team dynamics)

CAP-005 (An approach to manage consistency
of shared parameters throughout the project
lifecycle)

COB Graph Management Services

CHAL-002 (Lack of end-user tools for
collaborative Systems Engineering)

CAP-001 (End-user tools for collaborative
Systems Engineering)

COB Graph Management Services
(enables their development)

CAP-001 (End-user tools for collaborative
Systems Engineering)

COB Graph Management Services
(enables their development)

CAP-002 (Common graphical notation for
modeling and simulating systems) COB Graph Management Services CHAL-003 (Multidisciplinary)

CAP-005 (An approach to manage consistency
of shared parameters throughout the project
lifecycle)

COB Graph Management Services

CAP-005 (An approach to manage consistency
of shared parameters throughout the project
lifecycle)

COB Graph Management Services

CHAL-004 (Focus shift over the
project’s lifecycle)

CAP-006 (Versioning and configuration control
mechanism)

COB Versioning Control Services

COB Persistence

CHAL-005 (Complex information
CAP-003 (Constructs for modeling complex COB Graph Management Services

 22

Challenge Capability(ies) Addressing Challenge COB Platform Component
Implementing Capability

system relations)

interconnections)
CAP-004 (End-user tools to visualize the
complex interconnections in a system)

CMS Management Client Tools

COB Graph Management Services

CAP-003 (Constructs for modeling complex
system relations) COB Graph Management Services

CHAL-006 (Multiple system Views)
CAP-004 (End-user tools to visualize the
complex interconnections in a system) COB Graph Management Services

CAP-012 (Ability to support trade studies) COB Graph Management Services

CAP-003 (Constructs for modeling complex
system relations) COB Graph Management Services

CAP-007 (Ability to create libraries of reusable
components)

COB Graph Management Services

COB Versioning Control Services

COB Persistence

CAP-009 (Simulation orchestration)
COB Graph Management Services

COTS Access Services

CHAL-007 (Information-intensive
trade studies)

CAP-011 (Ability to create and execute
workflows) COB Workflow Services

CHAL-008 (Uncertainty) CAP-003 (Constructs for modeling complex
system relations) COB Graph Management Services

CHAL-009 (Capturing Design
Decisions and Rationale)

CAP-006 (Versioning and configuration control
mechanism)

COB Versioning Control Services

COB Persistence

CHAL-010 (Capturing assumptions
and applicability of models)

CAP-008 (Ability to capture the assumptions,
rationale and limitations of a model)

COB Graph Management Services

COB Versioning Control Services

CAP-003 (Constructs for modeling complex
system relations) COB Graph Management Services

CHAL-011 (Variety of software tools
and information standards)

CAP-009 (Simulation orchestration)
COB Graph Management Services

COTS Access Services

CHAL-012 (Multiple dimensions of
versioning control)

CAP-006 (Versioning and configuration control
mechanism)

COB Versioning Control Services

COB Persistence

CHAL-013 (Traceability of
requirements)

CAP-010 (Requirements allocation and
traceability) COB Graph Management Services

CHAL-014 (Workflow) CAP-011 (Ability to create and execute
workflows) COB Workflow Services

CHAL-015 (Modularity and
Reusability)

CAP-007 (Ability to create libraries of reusable
components)

COB Graph Management Services

COB Versioning Control Services

COB Persistence

 23

4.1.2 COB Management System (CMS)-based CEEs
As mentioned above, the envisioned CMS can be either deployed stand-alone or coupled with existing
dedicated systems (such as PLM systems, workflow engines, database management systems,
interoperability middleware, etc.). These two deployment options are illustrated in Figures 16 and 17,
respectively. Figure 16 illustrates the stand-alone option, in which the server side provides the COB
Services. The client side consists of a suite of tools (“COB Management Client Tools” in the figure) for
managing the system and performing basic COB management tasks. Also shown in Figure 16 are COB-
enabled end-user applications, which developers create using the COB API to access the CMS services on
the server. The CMS Management Client Tools are essentially COB-enabled end-user applications too,
with their only distinguishing characteristic being that they are delivered as part of the CMS.

While COB-enabled end-user applications would still have to implement the user interface (UI) and
business logic specific to their application, they would leverage the graph solving, generic COB UI,
information mapping, and tool access “plumbing” logic provided by the COB Services. The underlying
constraint graph used by these applications does not need to be hard-coded in the application itself; instead,
it can be stored and maintained independently and read by the application (and potentially by several COB-
enabled applications concurrently) at run time.

Depending on the application, the underlying constraint graph structure may be relatively static and require
little or no modification during the life of the application. Such applications leverage the graph to enable
attribute value changes and input/output direction changes. These type of static COB graph structures may
be created upfront (at application design time) using a SysML tool or simply by hand with a text editor
(using the COB lexical form, for example). Other applications may want to provide users the ability to
manipulate and modify the graph structure at run time; for these the COB SDK also provides UI
Components than can be embedded in the application to display the constraint graph as a SysML diagram
and enable interactive graphical manipulation.

Composable Objects (COBs)

COB Services (graph mgt, conf. control, meta-solving, persistence, tool access, UI,…)

COB Management System

Tool Tool

Tool

Native Tools Models

Traditional
COTS and in-house

end-user tools
(authoring, viewing,

solving,..)

Tool
Tool

wrappers

COB-Enabled End-User Applications

COB SDK
UI Components

SysML
UI Control

COB API

COTS SysML Tools

SysML
UI Control

COB API

SysML
UI Control

COB API

COTS SysML Tools

COB API

COB
Tree

Other COB Apps.

COB API

COB
Tree

COB APICOB API

COB
Tree

Other COB Apps. Domain-specific
Simulation tools

COB API

Domain-specific
Simulation tools

COB APICOB API

CMS Management Client Tools

COB Authoring

COB API

COB Authoring

COB API

COB Configuration
Management

COB API

COB Configuration
Management

COB API

COB Browsing

COB API

COB Browsing

COB APICOB API

Figure 16: Stand-Alone COB Management System (CMS) and COB-Enabled Applications

(e.g., in “next-generation ICEMaker” mode)

 24

The vision is that, using COB-enabled applications, teams of engineers will be able to collaboratively and
graphically (using SysML) model their systems and the complex interrelations between their parameters.
They will assemble models by using a combination of reusable models from predefined libraries and new
models they create from scratch. They will drag and drop graphically pluggable components — provided
by tool vendors or third parties — that encapsulate the access to external tools and connect them to the rest
of the system. Lastly, they will run simulations of these systems, and the underlying environment will
orchestrate the execution of external software tools and the storage and retrieval of information behind the
scenes.

The SysML diagram of the system is treated as a constraint graph representing the relations between the
subsystems and their parameters, ranging from simple equality relations to complex algorithms
implemented in external software tools such as finite element analysis (FEA) solvers. The direction in
which these relations are executed is not assumed in advance; so a given relation may support multiple
input/output scenarios. In other words, COBs provide a non-causal knowledge representation, which allows
the same models to take on various causalities depending on appropriate I/O combinations at different
points during the development of complex systems like space systems. Underneath, the COB Services
manage the solving of the constraint graph and coordinate the access and execution of external tools to
solve for the outputs. Freed from peripheral tasks such as coding, tool set up and execution coordination,
and data re-entry, engineers can now focus on the design of the system itself, evaluate more alternatives,
consider more what-if scenarios, and detect conflicts earlier — all this leading to better designs.

Figure 17 illustrates the second CMS deployment option, where existing dedicated systems (CEE/PLM
systems, in this example) are coupled with a CMS. Here the CEE/PLM system and the CMS enhance each
other’s functionality; the CEE/PLM system provides industrial strength configuration management, access
control, workflow and tool access services to the CMS, while the CMS provides graph management and
meta-solving services to the CEE/PLM system.

Composable Objects (COBs) Fine-grained
Relations (formula-
based, buffered,

black-box, …)

COB Management System

Tool Tool

Tool
CEE/PLM Objects

CEE/PLM System Coarse-grained
relations

(“contains”, “attached to”,
“revision of”, ..)

PLM entities referencing
external tools models

Traditional
COTS and in-house

end-user tools
(authoring, viewing,

solving,..)

PLM entities
(parts, assemblies,

documents, requirements,
files, analysis results…)

CEE/PLM Services (configuration management, access control, workflow, tool access…)

COB Services (graph mgt, meta-solving, tool access, UI,…)

Figure 17: CMS Coupled with a CEE/PLM System

(e.g., the NASA ESMD enterprise-level Windchill-based CEE)

 25

Table 6 below shows a sample of possible solution providers for each COB-based CEE system component
in the two figures above (the shaded ones are already developed or currently under development by GIT).
This table shows that many components leverage existing COTS capabilities to a large degree, with COBs
providing the means to represent fine-grained interconnection knowledge and to orchestrate interoperability
among the diverse models associated with these COTS capabilities.

Table 6: Typical Sample CEE Subsystem Solution Providers5

Component Application Category Providers

CMS Management Client Tools System Management Utilities GIT (R&D extensions in progress)

SysML Modeling Tools

EmbeddedPlus (EmbeddedPlus Engineering),
Rhapsody (I-Logix), RSA (IBM), Studio
(Artisan Software), TAU (Telelogic),
Teamcenter SE (UGS)

Requirements Management Tools
Cradle (3SL), DOORS (Telelogic), Eclipse,
RequisitePro (IBM), Teamcenter
Requirements (UGS)

COB-Enabled
End-User Applications

PWA Warpage, Chip Packaging,
PWB Layup GIT

CMS COB Services GIT (R&D extensions in progress)

ECAD/MCAD

Allegro (Cadence), Expedition (Mentor
Graphics), Visual (Zuken);
AutoCAD/Inventor (Autodesk), Catia
(Dassault), NX (UGS), Pro/E (PTC)

Discipline-Specific Simulation Tools Simulink (MathWorks), Modelica, Dymola
(Dynasim)

Mathematical Solvers Mathematica (Wolfram Research), Matlab
(MathWorks)

CAE: CFD, FEA, ... Ansys (Ansys Inc.), Flotherm (Flomerics),
NX Nastran (UGS), Patran (MSC Software)

Traditional
Engineering Applications

Optimizers, Trade Space Explorers iSIGHT (Engineous), ModelCenter (Phoenix)

Middleware Engineering Middleware AnalysisServer (Phoenix), FIPER
(Engineous)

PLM Systems PLM/PDM
Enovia (Dassault), Teamcenter
Engineering/Enterprise (UGS),
Vault (Autodesk), Windchill (PTC)

4.1.3 Standards-based Collective Models as a CEE System Component
An important aspect of a CEE system is the conceptual aggregation of all the models that are relevant to a
given complex engineering system (e.g., all the models relevant to the space shuttle). We call this
aggregation a collective product model or a collective system model [Peak, Lubell, et al. 2004]. Figure 18
illustrates how a collective model (outer oval) is generally composed by diverse submodels (inner sets).

5 Listed alphabetically by tool name.

 26

Each submodel contains information about a specific domain (e.g., Requirements Management, as well as
ECAD, MCAD, etc. in later phases). Each tool in this figure typically focuses on viewing or editing a
particular type of submodel within this overall system model (e.g., Mentor Graphics CAD tools perform
circuit board electrical design and layout, and Pro/E CAD tools develop 3D enclosures and circuit board
mechanical assemblies). Portions of the collective model may exist that are not addressed by traditional
(COTS) tools (for example, the Cost submodel in the figure). This situation is where so-called “Gap-
Filling” tools are required to populate these submodels.

The schemas in this collective model may have been defined by a variety of bodies, including international,
government or corporate standard organizations (e.g., STEP APs, IDF, etc.), vendors (UGS’ PLM-XML,
Dassault Systemes’ 3D For All, Autodesk’s DWF), may have been custom-defined for the specific
application, or may be a combination of standard schemas with custom extensions. In addition, these
schemas may be defined using a variety of modeling languages (e.g., OWL, EXPRESS, XML,
UML/SysML, etc.). Lastly, the interoperability between each tool and the CEE may be achieved using a
variety of technologies (file-based, messaging, SOAP, CORBA, RPC, in-memory, in-process, via a
database, etc.).

Realistically, these differences in schemas, modeling languages and interoperability technologies may
never be reconciled in a universal standard way. The availability of data exchange standards helps alleviate
the problem by providing common schemas that facilitate interoperability among tools and between these
tools and the collective model. But any standard is limited in scope and normally targets a specific domain.
Therefore there will always be the need to perform semantic and syntactic mappings between tools and
their models to achieve integration and extensibility at a multi-disciplinary level. Our “multi-technology”
approach acknowledges this reality and provides a mechanism for federating models into collective models
at a level of abstraction above these differences. We believe engineers can employ SysML as a primary
unifying graphical nomenclature to compose federated simulations, while the underlying COBs (via the
COB Services) “take care of” (i.e., contain the logic embodied in code) the access to external tools,
information retrieval and mapping, and solving for outputs.

As an example, consider a COB that encapsulates requirements information. There will be code behind this
COB to access information from a requirements management tool like Cradle and map it to the collective
model. Even more desirable, the same COB may access requirements information via a standards-based
interface or repository (e.g., via STEP AP233) instead of being dependent on a particular tool like Cradle.
By leveraging such standards, the COB automatically also “works” with other requirements management
tools that conform to this standard (such as UGS Teamcenter Requirements or Vitech Core).

Overall, this collective model view underscores what we call a model-centric thinking vs. tool-centric
thinking. In the latter case, the focus and entry point is a tool which may often seem to hold a model
hostage (i.e., forcing you to use that tool to do anything with your model, including not providing you open
access to your model). With model-centric thinking, people utilize a variety tools to work on their model
(analogous to how machinists utilize a variety machine tools to fabricate their part).

 27

Cradle

API

Pro/E

API

Mentor

API

NX

API

Ansys

API

STK

API

Collective/Federated
Model
(e.g., NExIOM)

Sub-models

Tool’s Data Model

Exchange Mechanism:
• File
• Messaging
• SOAP
• Database
• In-Memory/In-process
• Remote Procedure Calls
• CORBA

Schema:
• Intl./Gvt. Standard
• Custom
• Corporate standard
• Hybrid

Modeling Language:
• OWL
• EXPRESS
• UML/SysML
• XML
• GIT COBs

Collaborative Engineering Environment
(e.g., Windchill)

Core

APICode to
export/import data
between tool and
collective model E/I E/I E/I E/I E/I

E/IE/I

Requirements

ECAD MCAD

Orbit
Planning

FEA

Cost
Semantic &

syntactic mappings
between

tool model and
collective model

“Gap-
Filling”
Tool

Figure 18: CEE Information Federation via a Standards-based Collective Model

4.2 Composable Objects/Multi-Representation Architecture (COB/MRA)
Background

4.2.1 Overview
As mentioned in the previous sections, the COB Representation provides the conceptual foundation of the
COB Platform, as it defines the underlying data model and algorithms for the implementation of the COB
Platform and its services.

This section overviews the COB Representation — and the related Multi-Representation Architecture
(MRA) — and discusses how they relate to the envisioned CEE System. It also provides references for
more detailed discussions and example uses of these technologies.

Table 7 below provides a summary of GIT technologies aimed at next-generation CEEs, with brief
descriptions of what they are and how they relate to the COB Platform.

 28

Table 7: GIT Technologies for Next-Generation CEEs

Current GIT
Technology What it is How it relates to the envisioned

COB Platform

Composable Objects
(COBs) Representation

A constraint graph- and object-based
information modeling representation. Provides
the conceptual foundation for XaiTools.

Will be enhanced to provide the
conceptual foundation for the COB
Platform.

Multi-Representation
Architecture (MRA)

A design pattern that represents the primary
types of conceptual models in engineering
simulation environments and their fine-grain
associativities (including idealization relations
between design models and analysis models).
It has been implemented using COBs and
XaiTools for various electronic packaging and
aerospace applications to transform and
marshal information between external
authoring and solving software tools

Will be generalized to systems-of-
systems (SoS) and implemented using
the COB Platform for the same purpose.

XaiTools

An early implementation by GIT of COB and
MRA concepts in the form of a toolkit of
classes, services and an end-user tool (a “COB
Browser”). Currently being used in various
electronic packaging and aerospace
applications developed by GIT.

Will evolve into an implementation of
COB Platform and CMS concepts.

4.2.2 Composable Object (COB) Representation
Composable objects (COBs)6 have been developed by GIT as a means for integrating design models with
diverse analysis7 models. Design and analysis information is typically represented by a collection of
interrelated models of varying discipline and fidelity. Thus a method for capturing diverse multi-fidelity
models and their fine-grained relations was needed. It was also desirable for this method to be independent
of the specific CAD/CAE tools used to create, manage, and compute these models.

The COB representation is based on object and constraint graph concepts to gain their modularity and
multi-directional capabilities. Object techniques provide a semantically rich way to organize and reuse the
complex relations and properties that naturally underlie engineering models. Representing relations as
constraints makes COBs flexible because constraints can generally accept any combination of I/O
information flows. This multi-directionality enables design sizing and design verification using the same
COB-based analysis model. Engineers perform such activities throughout the design process, with the
former being characteristic of early design stages and vice versa.

The COB representation includes several modeling languages. It has lexical formulations that are computer
interpretable, as well as graphical forms that aid human comprehension (Figure 10, Figure 19). For
example, the graphical constraint schematic notation (Figure 20) emphasizes object structure and relations
among object attributes and has strong electrical schematic analogies. Over the past few years we have
been working with other SysML developers to embody COB concepts within SysML (especially regarding
its internal block diagram and parametric diagram constructs) [Peak 2002c; Peak 2005]. We believe this
approach will a) benefit SysML by providing conceptual formalisms and a broad variety of examples, and
b) benefit COBs by leveraging a richer set of UML2-based constructs and broader commercial support by
multiple vendors.

6 COBs are referred in some of the older literature as Constrained Objects. The change in name was to better reflect the
composability nature of these objects.
7 In this overview, “analysis” and “simulation” denotes modeling physical behavior such as stress and
temperature. Envisioned next-generation extensions include generalizations for broader classes of modeling
and simulation.

 29

Figure 21 provides examples of the main classical COB formulations for a triangle template and its usage
in a prism. A prism instance is also shown. See [Peak 1999a, 1999d, 2002c] and [Wilson 2000, 2001] for
more details on the COB Representation and further examples.

Subsystem-S

Object Relationship Diagram-S

COB Structure
Definition Language

(COS)

I/O Table-S

Constraint Graph-S

Constraint Schematic-S

STEP
Express

Express-G

Lexical Formulations

OWL UMLXML

COB Instance
Definition Language

(COI)

Constraint Graph-I

Constraint Schematic-I

STEP
Part 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in OWL UML

Lexical Formulations

XML

a. COB structure languages. b. COB instance languages.

Figure 19: Lexical and Graphical Formulations of the COB Representation

s

a b

dc

a

b

d

c

e

r1

[1.2]

[1.1]
f gcbe −=

r2

h

w
L [j:1,n]

wj

s

a b

dc

a

b

d

c

e

r1

[1.2]

[1.1]
f gcbe −=

r2

h

w
L [j:1,n]

wj

variable a subvariable a.d
subsystem s
of cob type h

equality relation
e = f

relation r1(a,b,s.c)

subvariable s.b

option 1.1:
f = s.d

option 1.2:
f = g

option category 1

aggregate c.w
element wj

variable a subvariable a.d
subsystem s
of cob type h

equality relation
e = f

relation r1(a,b,s.c)

subvariable s.b

option 1.1:
f = s.d

option 1.2:
f = g

option category 1

aggregate c.w
element wj

200 lbs

30e6 psi
Result b = 30e6 psi
(output or intermediate variable)

Result c = 200 lbs
(output of primary interest)

X

Relation r1 is suspended
X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

a. Structure notation (-S) b. Instance notation (-I)

Figure 20: Basic Constraint Schematic Notation (green text = explanation)

 30

Triangular
Prism

Vh

b

l

c. Constraint Schematic-Sa. Shape Schematic-S

b. Relations-S

d. Subsystem-S
(for reuse by other COBs)

Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV =

cross-section
h

b

V l

AlVr =:1

e. Lexical COB Structure (COS)
COB triangular_prism SUBTYPE_OF geometric_shape;

length, l : REAL;
cross-section : triangle;
volume, V : REAL;

RELATIONS
r1 : "<volume> == <cross-section.area> * <length>";

END_COB;

f. Constraint Schematic-I

g. Lexical COB Instance (COI)

state 1.0 (unsolved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
length : 5.0;
volume : ?;

END_INSTANCE;

state 1.1 (solved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
cross-section.area : 3.0;
length : 5.0;
volume : 15.0;

END_INSTANCE;

example 1, state 1.1
Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV =

cross-section

3 in2
2 in

3 in

15 in35 in

Triangular
Prism

Vh

b

l

c. Constraint Schematic-Sa. Shape Schematic-S

b. Relations-S

d. Subsystem-S
(for reuse by other COBs)

Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV =

cross-section
h

b

V l

AlVr =:1

e. Lexical COB Structure (COS)
COB triangular_prism SUBTYPE_OF geometric_shape;

length, l : REAL;
cross-section : triangle;
volume, V : REAL;

RELATIONS
r1 : "<volume> == <cross-section.area> * <length>";

END_COB;

f. Constraint Schematic-I

g. Lexical COB Instance (COI)

state 1.0 (unsolved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
length : 5.0;
volume : ?;

END_INSTANCE;

state 1.1 (solved):
INSTANCE_OF triangular_prism;

cross-section.base : 2.0;
cross-section.height : 3.0;
cross-section.area : 3.0;
length : 5.0;
volume : 15.0;

END_INSTANCE;

example 1, state 1.1
Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, V
r1

AlV =

cross-section

3 in2
2 in

3 in

15 in35 in

a. Shape Schematic-S

h

b
A

d

c. Constraint Schematic-S

base, b
r1

r2

bhA 2
1=

height, h

222 hbd +=

area, A

diagonal, d

222
2

1

:
2

1:

hbdr

bhAr

+=

=
b. Relations-S

Triangle

dh

Ab

Triangle

dh

Ab

d. Subsystem-S
(for reuse by other COBs)

e. Lexical COB Structure (COS)
COB triangle SUBTYPE_OF geometric_shape;

base, b : REAL;
height, h : REAL;
diagonal, d : REAL;
area, A : REAL;

RELATIONS
r1 : "<area> == 0.5 * <base> * <height>";
r2 : "<diagonal>**2 == <base>**2 + <height>**2";

END_COB;

a. Shape Schematic-S

h

b
A

d

a. Shape Schematic-S

h

b
A

d

c. Constraint Schematic-S

base, b
r1

r2

bhA 2
1=

height, h

222 hbd +=

area, A

diagonal, d

c. Constraint Schematic-S

base, b
r1

r2

bhA 2
1=

height, h

222 hbd +=

area, A

diagonal, d

222
2

1

:
2

1:

hbdr

bhAr

+=

=
b. Relations-S

222
2

1

:
2

1:

hbdr

bhAr

+=

=
b. Relations-S

Triangle

dh

Ab

Triangle

dh

Ab

d. Subsystem-S
(for reuse by other COBs)

e. Lexical COB Structure (COS)
COB triangle SUBTYPE_OF geometric_shape;

base, b : REAL;
height, h : REAL;
diagonal, d : REAL;
area, A : REAL;

RELATIONS
r1 : "<area> == 0.5 * <base> * <height>";
r2 : "<diagonal>**2 == <base>**2 + <height>**2";

END_COB;

Figure 21: COB Representation Tutorial for Triangles and Prisms

4.2.3 The Multi-Representation Architecture (MRA)
The Multi-Representation Architecture (MRA) (Figure 22) is the conceptual foundation of an X-analysis
integration (XAI)8 methodology based on ontological patterns that naturally exist in engineering analysis
processes. It is particularly aimed at design-analysis integration in CAD/CAE environments with high
diversity (e.g., diversity of parts, analysis discipline, analysis idealization fidelity, design tools, and analysis
tools) and where explicit design-analysis associativity is important (e.g., for automation, knowledge capture,
and auditing). In this context, analysis means simulating the physical behavior of a part or system (e.g.,
determining the stress in a circuit board solder joint).

8 X = design, manufacture, sustainment, and other lifecycle phases.

 31

1 Solution Method Model

ΨABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB
ΦAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3
body2

body1
body4

T0

Printed Wiring Board (PWB)

Solder
JointComponent

Analyzable
Product Model

Figure 22: The Multi-Representation Architecture (MRA)

The MRA contains intermediate representations as stepping stones to achieve the flexibility and modularity
dictated by complex domains like simulation-based design and engineering (SBD/SBE). Employing an
extended object-oriented approach, these intermediate representations are naturally groupings of concepts
that occur between traditional design and analysis models. The MRA is particularly aimed at capturing
reusable analysis knowledge at the preliminary and detailed design stages.

The MRA conceptual patterns (Figure 22) include the following (all of which are represented as COBs):

• Analyzable product models (APMs): Represent knowledge-based design models augmented with
analysis-oriented overlays. Include multi-fidelity idealizations and multi-source design
information coordination (including interfacing with diverse CAD tools and design-oriented
descriptive resources).

• Context-based analysis models (CBAMs): Represent product-specific analysis modules/templates.
Capture idealization decisions inside CAD-CAE associativity relations. Connect APMs and ABBs.

• Analysis building blocks (ABBs): Represent product-independent analytical concepts as
semantically rich reusable, modular, tool-independent objects. Generate SMMs based on solution
technique-specific considerations such as symmetry and mesh density.

• Solution method models (SMMs): Represent solution method-specific models. Support white box
reuse of existing tools (e.g., FEA tools and in-house codes). Automatic interactions occur through
native command lines and/or APIs based on standards like CORBA and SOAP.

The reader is referred to [Peak 1998, 1999a, 1999d, 2002a] and [Tamburini 1997a, 1999] for more details
on the MRA and examples.

4.2.4 Towards a Next-Generation MRA for Systems-of-Systems (SoS)
Table 8 below summarizes the major types of patterns that exist when complex systems are described and
simulated. The first column shows terminology developed in our original MRA work where the focus was
on patterns for domain-level design-analysis integration (DAI). The second column highlights the purpose
of each traditional pattern. The last column provides terminology towards generalizing these concepts for
the modeling and simulation of arbitrary systems-of-systems (SoS). We plan to further develop this
generalized MRA approach for such applications in future phases of this work.

 32

Table 8: Generalized MRA Patterns for Complex Systems Modeling & Simulation (M&S)
Traditional Patterns

(for CAD-CAE)
Traditional CAD-CAE Purpose

regarding Design-Analysis Integration (DAI)
Generalized Patterns
(for complex systems)

design tools
(CAD)

- Define systems (parts, assemblies, …) in necessary &
sufficient descriptive terms (not behavioral)
- Usually are COTS tools

system description tools

analyzable product models
(APMs)

- Represent design aspects of products and enable connections
with design tools
- Support idealizations usable in numerous analysis models
- Have possibly many associated CBAMs that verify
requirements

integrated system model

context-based
analysis models
(CBAMs)

- Contain linkages explicitly representing design-analysis
associativity, indicating usage of APM idealizations
- Create analysis models from ABBs and automatically connect
them to APM attributes
- Represent common analysis models as automated, predefined
templates
- Support interaction of analysis models of varying complexity
and solution method
- Enable parametric design studies via multi-directional
input/output (in some cases)

context-based
simulation model

(system-specific
 simulation model)

analysis building blocks
(ABBs)

(generic analytical concepts)

- Represent analytical concepts as composable objects
- Act as semantically rich 'pre-preprocessor' & 'post-
postprocessor' models.
- ABB instances create SMM instances based on solution
method considerations and receive results after automated
solution tool execution

simulation building block

(generic analytical concepts)

solution method models
(SMMs)

- Packages solution tool inputs, outputs, and control as
integrated objects (often as a componentized wrapping of
solution tool native files)
- Automates solution tool access and results retrieval via tool
agents and wrappers

simulation method model

solution tools
(CAE)

- Execute simulation models (often as vendor-specific native
files)
- Usually are COTS tools

simulation tool
(solver)

version: 2005-10-26

4.2.5 XaiTools - a Reference Implementation
To help validate the COB Representation and MRA technique, we have developed COBs for a variety of
aerospace and electronic packaging test cases using our toolkit called XaiTools. XaiTools is an example
embodiment of COB concepts and includes an API, samples and a spreadsheet-like COB Browser (Figure
23) which supports knowledge capture in a non-causal object-oriented manner. We use constraint
management techniques to employ existing solvers whenever possible such as commercial math and finite
element analysis (FEA) tools (e.g., Ansys). Tutorials and short courses convey the concepts and include
examples that combine generic and domain-specific COBs. COBs have been deployed in production usage
environments to help automate chip package thermal resistance analysis. See [Wilson 1999, 2000] for
more details on XaiTools.

 33

Figure 23: XaiTools COB Browser

4.2.6 Space System Example
See Appendix A for a conceptual test case illustrating this COB/MRA approach (including usage of
SysML) for a satellite system example known as FireSat.

4.3 COB Representation Requirements to Enable Next-Generation CEEs
So far we have discussed the challenges of Collaborative Engineering (Section 3.1) and the desired
capabilities of a CEE System to address these challenges (Section 3.2). In Section 4.1 we discussed how
these capabilities are covered by each subsystem of our COB Platform. We also established that the COB
Representation is the conceptual foundation for the COB Platform.

Now that we have a working knowledge of the COB Representation, in this section we list the requirements
that the COB Representation must satisfy to support the promised COB Platform functionality, and thus
enable next-generation CEE systems.. These requirements are presented in Table 9 below.

 34

Table 9: COB Representation Required Capabilities

Capability Req # COB Representation Requirement

CR-001 The COB Representation’s data model and operations shall be exposed via an
API to enable development of COB-based applications.

CR-002

The COB Representation shall provide the basic constructs (or “building
blocks”) for defining the components of a system; including systems,
subsystems, system parameters, parameter constraints, relations between and
within subsystems, and relations between system parameters .

CR-003 The COB Representation shall provide mutually equivalent lexical and
graphical representations for these constructs.

CAP-001 (End-user tools for
collaborative Systems
Engineering)

CR-004
The COB Representation shall support interactive constraint schematic
construction, hybrid graphs (mixing causal and non-causal relations), and
automated effective inversion of causal relations.

CR-005
The COB Representation shall specify how its constructs shall be represented
in SysML, and provide workarounds whenever there is no direct mapping
between the two. CAP-002 (Common graphical

notation for modeling and
simulating systems)

CR-006 The COB Representation shall be able to interoperate with the data exchange
format chosen by the SysML standard (still TBD, but most likely to be XMI)

CR-007

The COB Representation shall enable the representation of the parametric
relationships among all fidelity levels (coarse, detailed), domains
(mechanical, electrical, software, controls, optics, thermal, etc.) and types
(physics-based, functional, analytical, simulation, visualization, design, etc.)
of system and component models.

CR-008 The COB Representation shall provide constructs for defining formula-based
relations (see CAP-003 in Section 3.2).

CR-009 The COB Representation shall provide constructs for defining equality
relations (see CAP-003 in Section 3.2).

CR-010 The COB Representation shall provide constructs for defining constraint
relations (see CAP-003 in Section 3.2).

CR-011 The COB Representation shall provide constructs for defining aggregate
relations (see CAP-003 in Section 3.2).

CR-012 The COB Representation shall provide constructs for defining buffered
relations (see CAP-003 in Section 3.2).

CR-013 The COB Representation shall provide constructs for defining selector
relations (see CAP-003 in Section 3.2).

CR-014 The COB Representation shall provide constructs for defining breaker
relations (see CAP-003 in Section 3.2).

CR-015 The COB Representation shall provide constructs for defining black-box
relations (see CAP-003 in Section 3.2).

CR-016 The COB Representation shall provide constructs for defining unidirectional
relations (see CAP-003 in Section 3.2).

CAP-003 (Constructs for modeling
complex system relations)

CR-017 The COB Representation shall allow the definition of the possible directions
in a relation (i.e., allowable sets of inputs and outputs).

 35

CR-018 The COB Representation shall provide constructs for capturing the
uncertainty of a relation.

CR-019 The COB Representation shall support aggregate attributes (i.e., attributes of
type List)

CR-020
The COB Representation shall enable a user to identify, represent, visualize,
and navigate the relationships among the diverse types of models used to
analyze and simulate systems.

CR-021
The COB Representation shall provide equivalent computable lexical forms
and human-interpretable graphical forms for representing complex constraints
and relations between systems.

CR-022

The COB Representation shall provide an intuitive visualization language for
rigorously specifying non-causal and algorithmic relationships between
physical assembly parameters and corresponding idealized analysis model
parameters.

CR-023
The COB Representation shall provide a mechanism to determine what
system components (systems, parameters or relations) are affected by a
change in a given component.

CR-024 The COB Representation shall provide a mechanism to measure the slack of
the relations in the system (see CAP-004 in Section 3.2).

CAP-004 (End-user tools to
visualize the complex
interconnections in a system)

CR-025

The COB Representation shall provide a mechanism to determine what
parameters are bound (constrained) as a consequence of binding a given
parameter. Conversely, it shall provide a mechanism to determine what
parameters should be bound in order to bind another parameter.

CAP-005 (An approach to manage
consistency of shared parameters
throughout the project lifecycle)

CR-026
The COB Representation shall provide a mechanism to continuously check
that the system is in a consistent state and the constraints and relations are not
being violated as users make changes and additions to the system.

CR-027 The COB Representation shall provide constructs for capturing versioning of
system components (systems, subsystems and relations).

CR-028
The COB Representation shall provide constructs for capturing versioning of
simulations sets (which include the set of inputs, the versions of the system
and design models, and all the run-time selections made).

CAP-006 (Versioning and
configuration control mechanism)

CR-029 The COB Representation shall provide the necessary check in/check out logic
to ensure that the consistency of systems is maintained throughout versioning.

CR-030 The COB Representation shall allow the definition of reusable, adaptable
analysis building blocks. CAP-007 (Ability to create

libraries of reusable components)
CR-031 The COB Representation shall support inheritance of attributes and relations.

CR-032 The COB Representation shall provide constructs for capturing the
assumptions, rationale and limitations of a model.

CR-033
The COB Representation shall provide a mechanism for filtering the models
that are applicable to a particular context, based on its assumptions, rationale
and limitations.

CAP-008 (Ability to capture the
assumptions, rationale and
limitations of a model)

CR-034
The COB Representation shall provide a mechanism to capture the design
intent while using models of multiple fidelities (for example, capturing that a
2D model and 3D model of a component are being used for the same intent)

 36

CR-035
The COB Representation shall be independent of the specific CAD/E tools
used to create, manage, and compute these models, since tools for different
domains are often provided by different vendors.

CR-036 The COB Representation shall support the use of external programs as white-
box relations.

CR-037 The COB Representation shall provide a framework to interoperate with
COTS and interoperability middleware.

CR-038

The COB Representation shall be able to leverage standard representations of
product data (such as ISO STEP) but shall not rely on their availability or
completeness. In other words, the methodology shall also work with
custom/ad-hoc/non-standard representations or extensions to standard
representations.

CR-039 The COB Representation shall support providing relations (parametric
constraints) as outputs of a relation in addition of numeric values.

CR-040
The COB Representation shall support the use of value range constraints to
remove extraneous solutions when there are multiple solutions for a given
parameter.

CAP-009 (Simulation
orchestration)

CR-041
Whenever possible, the COB Representation shall leverage and/or be able to
interoperate with other methodologies (such as XML/XMI, UML/SysML,
OWL, Semantic Webs, STEP, topic maps).

CR-042
The COB Representation shall provide constructs for defining requirements
(quantitative or otherwise) and allocating them to the components of the
system implementing them.

CR-043 The COB Representation shall provide a mechanism for checking
conformance to quantitative requirements.

CAP-010 (Requirements
allocation and traceability)

CR-044 The COB Representation shall provide the mechanism for figuring out which
requirements can be relaxed in the event of a conformance conflict.

CR-045 The COB Representation shall provide constructs for defining workflows.

CAP-011 (Workflow)
CR-046

The COB Representation shall provide a mechanism for executing workflows
(i.e., advancing a model of a system through a sequence of steps, each of
which may query and/or change the values of the system parameters).

5 Summary
We presented a vision for next-generation collaborative engineering environments (CEEs) that are based on
the composable object (COB) knowledge representation. This methodology leverages the multi-
representation architecture (MRA) for simulation templates, the user-oriented SysML standard for system
modeling, and standards like STEP AP233 (ISO 10303-233) for enhanced interoperability.

The objective of this document has been to define requirements for the COB representation. However, to
achieve that objective, we first documented today’s major challenges and pain points of CEEs and then
mapped these challenges to desired CEE system capabilities. Then we described an advanced CEE
methodology in terms of envisioned COB components. Given that basis, we could then effectively specify
COB requirements.

In our current project we are defining and developing next-generation COB capabilities. Progress to date
includes the following accomplishments:

 37

• We implemented various COB examples as SysML models in a representative commercial
modeling tool (Artisan Studio). See draft space system examples in Appendix A, plus other more
complete examples for mechanical, electrical, and hydraulic systems [Peak et al. 2005; Peak,
2005].

• We have implemented a prototype interface between the above SysML tool (Studio) and XaiTools,
which enables SysML-based model authoring and COB-based execution using commercial math
and FEA solvers. We are also in the process of implementing a similar interface to a dynamics
system modeling tool (Dymola).

• To increase ease-of-use and familiarity, we have extended COB lexical support in XaiTools to
include XML-based formats.

From these experiences it appears that SysML will be able to provide most, if not all, of the structural
representation constructs imposed by the above COB requirements. Additionally, we have identified
subsolving constraint graph algorithms that will likely form the basis for the associated COB algorithm
extensions.

Given these promising results thus far, we are optimistic we will fulfill the COB requirements defined in
this document in subsequent phases and thus provide the foundation for next-generation CEEs.

References
Aughenbaugh, J. M., and Paredis, C. J. J. (2004) "The Role and Limitations of Modeling and Simulation in

Systems Design," in Proceedings of the 2004 ASME International Mechanical Engineering Congress
and RD&D Expo, paper no. IMECE2004-5981, Anaheim, CA, November 13-19,.
http://www.srl.gatech.edu/Members/jaughenbaugh/papers_presentations/IMECE2004-5981.pdf

EIS Lab (2005) The Composable Object (COB) Knowledge Representation: Enabling Advanced
Collaborative Engineering Environments (CEEs), Project Web Page, Georgia Tech Engineering
Information Systems Lab, http://eislab.gatech.edu/projects/nasa-ngcobs/

Kevin L.G. Parkin , Joel C. Sercel , Michael J. Liu , Daniel P. Thunnissen (2003) ICEMaker™: An Excel-
Based Environment for Collaborative Design”
http://monolith.caltech.edu/Papers/Parkin%20IEEE%20Paper%201564.pdf

Koch, P. (2002). “Probabilistic Design: Optimizing for Six Sigma Quality” 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver,
Colorado, Apr. 22-25. AIAA-2002-1471.

Larson WJ and Wertz JR ed. (1999) Space Mission Analysis and Design (SMAD), 3rd Ed. Microcosm, Inc.

NASA (1995). "NASA Systems Engineering Handbook (SP-610S)."

Paredis, C.J.J., A. Diaz-Calderon, R. Sinha, and P.K. Khosla (2001) "Composable Models for Simulation-
Based Design", Engineering with Computers. Vol. 17, pp. 112-128.

Peak R.S., Fulton R.E., Nishigaki I., Okamoto N. (1998) Integrating Engineering Design and Analysis
Using a Multi-Representation Approach. Engineering w. Computers, 14 (2) 93-114.

Peak R.S. et al, (1999a) Towards the Ubiquitization of Engineering Analysis to Support Product Design.
Invited Paper for Special Issue: Advanced Product Data Management Supporting Product Life-Cycle
Activities, Intl. J. Comp. Applications Technology 12(1): 1-15.

Peak, R. S., Scholand, A. J., Tamburini, D. R., Fulton, R. E. (1999d) "Towards the Routinization of
Engineering Analysis to Support Product Design," Invited Paper for Special Issue: Advanced Product
Data Management Supporting Product Life-Cycle Activities, Intl. J. Computer Applications in
Technology, Vol. 12, No. 1, 1-15, 1999.

 38

http://www.srl.gatech.edu/Members/jaughenbaugh/papers_presentations/IMECE2004-5981.pdf
http://eislab.gatech.edu/projects/nasa-ngcobs/
http://monolith.caltech.edu/Papers/Parkin IEEE Paper 1564.pdf

Peak R.S. (2002a) Techniques and Tools for Product-Specific Analysis Templates Towards Enhanced
CAD-CAE Interoperability for Simulation-Based Design and Related Topics. Intl. Conf. Electronic
Packaging. JIEP/ IMAPS Japan, IEEE CPMT. Tokyo.

Peak R.S. (2002c) Part 1: Overview of the Constrained Object (COB) Engineering Knowledge
Representation. Response to UML for Systems Engineering Request for Information (SE DSIG RFI 1)
OMG Document # ad/2002-01-17. http://syseng.omg.org/ .

Peak, R. S. (2003) Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-E Model
Interoperability. ASME DETC Paper No. CIE-48232, Chicago.
http://eislab.gatech.edu/pubs/conferences/2003-asme-detc-peak/

Peak R.S., J Lubell, V Srinivasan, SC Waterbury (Dec. 2004) STEP, XML, and UML: Complementary
Technologies. Product Lifecycle Management (PLM) Special Issue. J. Computing & Information
Science in Engineering.

Peak R.S., S. Friedenthal, A. Moore, R. Burkhart, S. Waterbury, M. Bajaj, I. Kim (2005) Experiences
Using SysML Parametrics to Represent Constrained Object-based Analysis Templates. 2005 NASA-
ESA Workshop on Product Data Exchange (PDE), Atlanta.
http://eislab.gatech.edu/pubs/conferences/2005-pde-peak/

Peak R.S. (2005) “SysML Emphasis at GIT” and “GIT SysML Parametrics Work”. Update to OMG SE
DSIG, Atlanta. http://eislab.gatech.edu/pubs/seminars-etc/2005-09-omg-se-dsig-peak/

SysML Forum (http://www.sysml.org/)

Tamburini, D. R., Peak, R. S., Fulton, R. E. (1997a) "Driving PWA Thermomechanical Analysis from STEP
AP210 Product Models," ASME Intl. Mech. Engr. Congress & Expo, CAE/CAD and Thermal
Management Issues in Electronic Systems, EEP-Vol. 23/HTD-Vol. 356, Agonafer, D. et al., Dallas, 33-45.

Tamburini, D.R (1999), The Analyzable Product Model Representation to Support Design-Analysis
Integration. Ph.D. Thesis - Mechanical Engineering. 1999, Atlanta: Georgia Institute of Technology.
http://eislab.gatech.edu/pubs/theses/99tamburini/

Wilson, M. W., Peak, R. S., Tamburini, D. R. (1999) XaiTools Users Guide. EIS Lab, Georgia Institute of
Technology, Atlanta.

Wilson, M. W.(2000), The Constrained Object (COB) Representation for Engineering Analysis Integration,
Masters Thesis, Georgia Institute of Technology, Atlanta.

Wilson M., Peak R., Fulton R. (June, 2001) Enhancing Engineering Design and Analysis Interoperability -
Part 1: Constrained Objects. First MIT Conference Computational Fluid and Structural Mechanics
(CFSM), Boston. Received Young Researcher Fellowship award.

 39

http://syseng.omg.org/
http://eislab.gatech.edu/pubs/conferences/2003-asme-detc-peak/
http://eislab.gatech.edu/pubs/conferences/2005-pde-peak/
http://eislab.gatech.edu/pubs/conferences/2005-pde-peak/
http://eislab.gatech.edu/pubs/seminars-etc/2005-09-omg-se-dsig-peak/
http://eislab.gatech.edu/pubs/theses/99tamburini/

Appendix A - Satellite System Example: FireSat
This Appendix highlights how COBs and their embodiment as SysML models might be applied to a sample
space system. We utilize the FireSat fire-detecting satellite system described in Space Mission Analysis and
Design (SMAD) [Larson and Wertz, 1999] as the backdrop.

First, Figure 24 overviews the SMAD space system design process. Our examples below start roughly at
the “Definition of Elements” level and then proceed to the conceptual design of a sample subsystem: the
attitude determination and control (ADC) system. We end with several leaf-level domain models: design
and simulation models for an ADC subsystem circuit board (which are themselves composed from generic
reusable building blocks).

Figure 25 is an abstract schematic of the FireSat system showing estimates for key parameters like lifetime,
orbit, and mass.

Figure 26 is a conceptual draft of this test case. It shows the FireSat system design (from SMAD Chapter
11) represented as SysML parametric diagrams for three levels of COB-based models. Figure 26 (a) shows
the top-level system design where items like orbit and mass properties are modular templates utilized by
several of the subsystems. Figure 26 (b) is an initial design of the ADC subsystem where the relations and
parameters needed to support magnetic torquer subsystem design have been included. Figure 26 (c) goes
one level deeper to illustrate initial magnetic torquer subsystem sizing and design.

This magnetic torquer system has a current drive electronics subsystem, which eventually decomposes to
assemblies including circuit boards. Figure 27 (a) is a COB-based MRA panorama depicting design and
simulation models at multiple abstraction levels that are all utilized at this same leaf-level of system
decomposition. Figure 27 (b) is a SysML class diagram view for the printed wiring board aspects of this
panorama (PWB = bare circuit board).

Figure 27 (c) and Figure 27 (d) are SysML parametric templates for two of these physics-based
simulations: pwb_extensional_model and pwb_1D_warpage_model. Both of these are product-specific templates
known as context-based analysis models (CBAMs) in terms of the MRA. Figure 27 (a) and Figure 27 (c)
show how the design aspects come from a domain tool (ECAD) and other design sources coordinated by an
analyzable product model (APM). The template connects these design aspects to a generic analytical
building block (the deformation model block), which is processed as a solution method model (SMM)
using general purpose solvers like FEA tools. Decomposed requirements are the prime motivation behind
such templates, and they typically provide both condition/environment inputs like temperature and results
evaluation factors like margin of safety as shown in the diagram.

The template in Figure 27 (d) has a similar structure. Its deformation model is composed of the extensional
rod analysis building block (ABB) seen in Figure 28, which bottoms out in another ABB (a linear elastic
material model) that contains only primitive attributes and relations. Such ABBs are often solved using
external COTS math solvers. Classical COB constraint schematic views (a motivator behind this new
SysML diagram notation) of these same ABBs were given in Figure 10.

Altogether, this example covers diverse interconnected models spanning roughly 6 levels of system
decomposition (from top-level satellite system to circuit board features) and 7 levels of abstraction
(including from native CAD model to context-specific simulation model to generic simulation building
blocks to native solver tool). We hope to implement such an example in the near future as a test case to
verify and validate the COB/MRA-based approach described in this document.

 40

Figure 24: Space System Design Process [Larson and Wertz, 1999]

Figure 25: FireSat Space Satellite Abstract System Schematic [Larson and Wertz, 1999]

 41

sc orbit

sc slew

: ADC System

adc ss

sc mass
properties

: Structures Sys

structures ss

…

: Guid. & Navig.
Sys.

guidance & navigation ss

…

: TT&C Sys

tt&c ss

: C&DH Sys.

c&dh ss

: Power System

power ss

: Thermal Sys.

thermal ss

mass
power

…

spacecraft internal subsystems (ssi)

key system parameters
for total spacecraft (sc)

M = Σmi

…
…

FireSat : Satellite Space System

…

: Propulsion Sys.

sc orbit

sc mass

related external subsystems

…

Nomenclature

ADC: Attitude Determination, and Control

TT&C: Telemetry, Tracking, and Command

C&DH: Command and Data Handling

SC: Spacecraft

SS: Subsystem

Sys: System

: Mass Properties

sc mass properties

M = 215 kg
Ix = 90 kg-m2

Iy = 60 kg-m2

Iz = 90 kg-m2

slew
normal = 1 deg

optional target-of-
opportunity = 30 deg

propulsion system

mass
power

…

mass
power

…
mass

power

…
sc mass
properties

sc orbit

: Circular Orbit

altitude (∆Ra)
= 700 km

total radius (Ra)
= 7078 km

earth equatorial
radius (Re)
= 6378 km

Ra = Re + ∆Ra

mass
power

mass
power

mass
power

sc orbit

sc slew

: ADC System

adc ss

sc mass
properties

: Structures Sys

structures ss

…

: Guid. & Navig.
Sys.

guidance & navigation ss

…

: TT&C Sys

tt&c ss

: C&DH Sys.

c&dh ss

: Power System

power ss

: Thermal Sys.

thermal ss

mass
power

…

spacecraft internal subsystems (ssi)

key system parameters
for total spacecraft (sc)

M = Σmi

…
…

FireSat : Satellite Space System

…

: Propulsion Sys.

sc orbit

sc mass

related external subsystems

…

Nomenclature

ADC: Attitude Determination, and Control

TT&C: Telemetry, Tracking, and Command

C&DH: Command and Data Handling

SC: Spacecraft

SS: Subsystem

Sys: System

: Mass Properties

sc mass properties

M = 215 kg
Ix = 90 kg-m2

Iy = 60 kg-m2

Iz = 90 kg-m2

slew
normal = 1 deg

optional target-of-
opportunity = 30 deg

slew
normal = 1 deg

optional target-of-
opportunity = 30 deg

propulsion system

mass
power

…

mass
power

…
mass

power

…
sc mass
properties

sc orbit

: Circular Orbit

altitude (∆Ra)
= 700 km

total radius (Ra)
= 7078 km

earth equatorial
radius (Re)
= 6378 km

Ra = Re + ∆Ra

sc orbit

: Circular Orbit

altitude (∆Ra)
= 700 km

total radius (Ra)
= 7078 km

earth equatorial
radius (Re)
= 6378 km

Ra = Re + ∆Ra

mass
power

mass
power

mass
power

Figure 26 (a): FireSat top-level system design

Figure 26: FireSat System Design as COB-based SysML Diagrams (Conceptual Draft)

 42

: Mass Properties

sc mass properties

M = 215 kg

: Magnetic Torquers Sys

electromagnetics ss

torquer rating
= 10 A.m2

roll controller

: Momentum Wheel
System

momentum wheel ss

mass

power
…

FireSat.adc ss : Attitude Determination and Control System

Ix = 90 kg-m2

Iy = 60 kg-m2

Iz = 90 kg-m2

: Disturbances Torques

sc disturbances torques

normal = 1.8e-6 Nm
optional target-of-opportunity

=

solar radiation

magnetic field…

4.4e-5 Nm

Iz Iy R

slew (θ)

Tg
earth gravity
constant (µ)

Tg, max
= 4.4e-5 Nm

mass
= 2 kg

power
=

yaw controller
pitch wheel
desaturator

5-10 W

Tg, max = max (Tg, i)

: Sun Sensors System

sun sensors ss

mass

power

…

: Horizontal Sensors
System

horizontal sensors ss

mass

power

…

: Thrusters System

thrusters ss

mass

power

…

: Magnetometer System

magnetometer ss

mass

power

…current drive
electronics

gravity gradient
disturbance torque equation

…

plus similar
subsystem connections

as shown for
electromagnetics ss

gravity gradient
torques

Tg = (3µ/2R3) |Iz – Iy| sin(2θ)

sc orbit

: Circular Orbit

total radius (Ra)
= 7078 km

slew

normal = 1 deg

optional target-of-opportunity
= 30 deg

maximum Tg
equation

mass

power
…

: Mass Properties

sc mass properties

M = 215 kg

: Magnetic Torquers Sys

electromagnetics ss

torquer rating
=

roll controller

10 A.m2

: Momentum Wheel
System

momentum wheel ss

mass

power
…

FireSat.adc ss : Attitude Determination and Control System

Ix = 90 kg-m2

Iy = 60 kg-m2

Iz = 90 kg-m2

: Disturbances Torques

sc disturbances torques

normal = 1.8e-6 Nm
optional target-of-opportunity

=

solar radiation

magnetic field…

4.4e-5 Nm

Iz Iy R

slew (θ)

Tg
earth gravity
constant (µ)

Tg, max
= 4.4e-5 Nm

mass
= 2 kg

power
=

yaw controller
pitch wheel
desaturator

5-10 W

Tg, max = max (Tg, i)

: Sun Sensors System

sun sensors ss

mass

power

…

: Horizontal Sensors
System

horizontal sensors ss

mass

power

…

: Thrusters System

thrusters ss

mass

power

…

: Magnetometer System

magnetometer ss

mass

power

…current drive
electronics

gravity gradient
disturbance torque equation

…

plus similar
subsystem connections

as shown for
electromagnetics ss

gravity gradient
torques

Tg = (3µ/2R3) |Iz – Iy| sin(2θ)

sc orbit

: Circular Orbit

total radius (Ra)
= 7078 km

slew

normal = 1 deg

optional target-of-opportunity
= 30 deg

maximum Tg
equation

mass

power
…

Figure 26 (b): FireSat ADC subsystem design (initial subsystem requirements and sizing)

FireSat.adc ss.electromagnetics ss : Magnetic Torquer System

D = Tg, wc max / B

Tg, max
= 4.4e-5 Nm

mass = 2 kg

power =

margin
= 0.1e-5 Nm

magnetic dipole rating
rule-of-thumb eqn.

 5-10 W

: Magnetic Torquer

pitch wheel desaturator ss

mass

power

…

: Magnetic Torquer

yaw controller ss

mass

power

…

: Magnetic Torquer

roll controller ss

mass

power

rating, Dr

: Current Drive
Electronics System

current drive electronics ss

mass
power

…

Tg, worst case (wc) max
= 4.5e-5 Nm

B

DDr

Tg, wc max

torquer rating,
Dr = 10 A.m2rating, Dr

rating, Dr

power eqn.

mass eqn. D

margin eqn.

magnetic dipole eqn.

magnetic dipole,
D = 1 A.m2

FireSat.adc ss.electromagnetics ss : Magnetic Torquer System

D = Tg, wc max / B

Tg, max
= 4.4e-5 Nm

mass = 2 kg

power =

margin
= 0.1e-5 Nm

magnetic dipole rating
rule-of-thumb eqn.

 5-10 W

: Magnetic Torquer

pitch wheel desaturator ss

mass

power

…

: Magnetic Torquer

yaw controller ss

mass

power

…

: Magnetic Torquer

roll controller ss

mass

power

rating, Dr

: Current Drive
Electronics System

current drive electronics ss

mass
power

…

Tg, worst case (wc) max
= 4.5e-5 Nm

B

DDr

Tg, wc max

torquer rating,
Dr = 10 A.m2rating, Dr

rating, Dr

power eqn.

mass eqn. D

margin eqn.

magnetic dipole eqn.

magnetic dipole,
D = 1 A.m2

Figure 26 (c): FireSat magnetic torquer subsystem design (initial subsystem requirements and sizing)

 43

Analysis Templates
of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General Math
Mathematica

Analyzable
Product Model

XaiTools
PWA-B

XaiTools
PWA-B

Solder Joint
Deformation*

PTH
Deformation
& Fatigue**

1D,
2D

1D,
2D,
3D

Modular, Reusable
Template Libraries

ECAD Tools
Mentor Graphics,

Zuken, …

temperature change, ∆T

material model

temperature, T

reference temperature, To

cte, α

youngs modulus, E

force, F

area, A stress, σ

undeformed length, Lo

strain, ε

total elongation, ∆L

length, L
start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

α

One D Linear
Elastic Model

(no shear)

∆T

εσ

εe

εt

thermal strain, εt

elastic strain, εe

mv3

mv2

x
FF

E, A, α

∆LLo

∆T, ε , σ

y
L

r1
12 xxL −=

r2

oLLL −=∆

r4

A
F

=σ

sr1

oTTT −=∆

r3
L
L∆=ε

material

effective length, Leff

de formation mode l

li near elastic model

Lo

Torsional Rod

G

ϕ

τ

J

γ

r

θ2

θ1

shear modulus, G

cross section:
effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: sha ft torsion

condition reaction

t
s1

A

S le eve 1

A ts2

d s2

d
s1

Sl eev e 2

 L

Sha ft

 Le ff

θs

T

outer radius, ro al2b

stress mos mode l

allowable stress

twist mos model

Margin of Safety
(> case)

allowable
actual

MS

Margin of Safety
(> case)

allowable
actual

MS

allowab le
twist Analysis Tools

PWB
Extension

1D,
2D

Materials DB

PWB Stackup Tool
XaiTools PWA-B

STEP AP210‡

GenCAM**,
PDIF*

‡ AP210 WD48 * = Item not yet available in toolkit (all others have working examples)

PWB
Warpage<<apm>>

<<cbam>><<abb>>

<<smm>>

Analysis Templates
of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General Math
Mathematica

Analyzable
Product Model

XaiTools
PWA-B

XaiTools
PWA-B

Solder Joint
Deformation*

PTH
Deformation
& Fatigue**

1D,
2D

1D,
2D,
3D

Modular, Reusable
Template Libraries

ECAD Tools
Mentor Graphics,

Zuken, …

temperature change, ∆T

material model

temperature, T

reference temperature, To

cte, α

youngs modulus, E

force, F

area, A stress, σ

undeformed length, Lo

strain, ε

total elongation, ∆L

length, L
start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

α

One D Linear
Elastic Model

(no shear)

∆T

εσ

εe

εt

thermal strain, εt

elastic strain, εe

mv3

mv2

x
FF

E, A, α

∆LLo

∆T, ε , σ

y
L

r1
12 xxL −=

r2

oLLL −=∆

r4

A
F

=σ

sr1

oTTT −=∆

r3
L
L∆=ε

material

effective length, Leff

de formation mode l

li near elastic model

Lo

Torsional Rod

G

ϕ

τ

J

γ

r

θ2

θ1

shear modulus, G

cross section:
effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: sha ft torsion

condition reaction

t
s1

A

S le eve 1

A ts2

d s2

d
s1

Sl eev e 2

 L

Sha ft

 Le ff

θs

T

outer radius, ro al2b

stress mos mode l

allowable stress

twist mos model

Margin of Safety
(> case)

allowable
actual

MS

Margin of Safety
(> case)

allowable
actual

MS

allowab le
twist Analysis Tools

PWB
Extension

1D,
2D

Materials DB

PWB Stackup Tool
XaiTools PWA-B

STEP AP210‡

GenCAM**,
PDIF*

‡ AP210 WD48 * = Item not yet available in toolkit (all others have working examples)

PWB
Warpage<<apm>>

<<cbam>><<abb>>

<<smm>>

Figure 27(a): Design-Analysis Interoperability Panorama

requirement

verify<<cbam>>

<<cbam>> <<cbam>>

<<apm>>

<<cbam>> <<cbam>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

requirement

verify<<cbam>>

<<cbam>> <<cbam>>

<<apm>>

<<cbam>> <<cbam>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

Figure 27 (b): Circuit Board Analysis Template Structure (UML/SysML Class Diagram)

Figure 27: COB/MRA-based Design and Simulation Templates
for a Leaf-level FireSat Subsystem: Circuit Boards

 44

PWB design

(AP210-based
design model from
Mentor Expedition)

FEA modelRequirements items

(Ansys)(UGS TcR)

Envisioned sample tool scenarios ...

<<apm>>

<<cbam>>

<<abb>>

<<abb>>

<<abb>>

<<smm>>

PWB design

(AP210-based
design model from
Mentor Expedition)

FEA modelRequirements items

(Ansys)(UGS TcR)

Envisioned sample tool scenarios ...

<<apm>>

<<cbam>>

<<abb>>

<<abb>>

<<abb>>

<<smm>>

Figure 27 (c): Sample SysML-Based Circuit Board Analysis Template: pwb_1D_warpage_model

(Implemented in the Artisan Studio UML/Modeling Tool)

<<apm>>

<<cbam>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

<<apm>>

<<cbam>>

<<abb>>

<<abb>>

<<abb>>

<<abb>>

Figure 27 (d): Sample SysML-Based Circuit Board Analysis Template: pwb_extensional_model

Figure 27 (continued)

 45

1D_ linear_elastic_model

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

τ

E

ν

α

T∆

σ

γ

G

tε

eε

ε

G
τγ =

)1(2 ν+
=

EG

Tt ∆= αε

Ee
σε =

te εεε +=

asm : 1D Linear Elastic Material Model Assembly DiagramParametricParametric

1D_ linear_elastic_model

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

τ

E

ν

α

T∆

σ

γ

G

tε

eε

ε

G
τγ =

)1(2 ν+
=

EG

Tt ∆= αε

Ee
σε =

te εεε +=

asm : 1D Linear Elastic Material Model Assembly DiagramParametricParametric

extensional_rod

«paramConstraint»
material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11 «paramConstraint»

material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11

strain=total_elongatio
n/length

total_elongation=length-
undeformed_length

length=|end-start|

stress=force/area

temperature_change=temperatur
e-reference_temperature

par : Extensional Rod Model Assembly DiagramParametric

extensional_rod

«paramConstraint»
material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11 «paramConstraint»

material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11

strain=total_elongatio
n/length

total_elongation=length-
undeformed_length

length=|end-start|

stress=force/area

temperature_change=temperatur
e-reference_temperature

par : Extensional Rod Model Assembly DiagramParametricParametric

<<abb>>

<<abb>>

<<abb>>
1D_ linear_elastic_model

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

τ

E

ν

α

T∆

σ

γ

G

tε

eε

ε

G
τγ =

)1(2 ν+
=

EG

Tt ∆= αε

Ee
σε =

te εεε +=

asm : 1D Linear Elastic Material Model Assembly DiagramParametricParametric

1D_ linear_elastic_model

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

τ

E

ν

α

T∆

σ

γ

G

tε

eε

ε

G
τγ =

)1(2 ν+
=

EG

Tt ∆= αε

Ee
σε =

te εεε +=

asm : 1D Linear Elastic Material Model Assembly DiagramParametricParametric

1D_ linear_elastic_model

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

τ

E

ν

α

T∆

σ

γ

G

tε

eε

ε

G
τγ =

)1(2 ν+
=

EG

Tt ∆= αε

Ee
σε =

te εεε +=

asm : 1D Linear Elastic Material Model Assembly DiagramParametricParametric

1D_ linear_elastic_model

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

«paramConstraint»
r1 : relation1

«paramConstraint»
r2 : relation2

«paramConstraint»
r3 : relation3

«paramConstraint»
r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

τ

E

ν

α

T∆

σ

γ

G

tε

eε

ε

G
τγ =

)1(2 ν+
=

EG

Tt ∆= αε

Ee
σε =

te εεε +=

asm : 1D Linear Elastic Material Model Assembly DiagramParametricParametric

extensional_rod

«paramConstraint»
material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11 «paramConstraint»

material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11

strain=total_elongatio
n/length

total_elongation=length-
undeformed_length

length=|end-start|

stress=force/area

temperature_change=temperatur
e-reference_temperature

par : Extensional Rod Model Assembly DiagramParametric

extensional_rod

«paramConstraint»
material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11 «paramConstraint»

material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11

strain=total_elongatio
n/length

total_elongation=length-
undeformed_length

length=|end-start|

stress=force/area

temperature_change=temperatur
e-reference_temperature

par : Extensional Rod Model Assembly DiagramParametricParametric

extensional_rod

«paramConstraint»
material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11 «paramConstraint»

material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11

strain=total_elongatio
n/length

total_elongation=length-
undeformed_length

length=|end-start|

stress=force/area

temperature_change=temperatur
e-reference_temperature

par : Extensional Rod Model Assembly DiagramParametric

extensional_rod

«paramConstraint»
material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11 «paramConstraint»

material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

temperature_change

stress strain

«paramConstraint»
r1

«paramConstraint»
r2

«paramConstraint»
r3

«paramConstraint»
r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»
r11

strain=total_elongatio
n/length

total_elongation=length-
undeformed_length

length=|end-start|

stress=force/area

temperature_change=temperatur
e-reference_temperature

par : Extensional Rod Model Assembly DiagramParametricParametric

<<abb>>

<<abb>>

<<abb>>

Figure 28: General Purpose Analysis Building Blocks (ABBs) Utilized in Figure 27 (d)

(SysML Formulations of ABBs in Figure 10)

 46

	Abstract
	Document History
	Project Team
	Acknowledgements
	Nomenclature
	Disclaimer
	Document Purpose
	Project Background
	Problem Overview
	CEE Challenges and Needs
	Desired Capabilities of a CEE System
	CEE System Design Considerations

	Envisioned COB/MRA-based CEE Methodology
	Envisioned Next-Generation CEEs
	Overview
	COB Management System (CMS)-based CEEs
	Standards-based Collective Models as a CEE System Component

	Composable Objects/Multi-Representation Architecture (COB/MR
	Overview
	Composable Object (COB) Representation
	The Multi-Representation Architecture (MRA)
	Towards a Next-Generation MRA for Systems-of-Systems (SoS)
	XaiTools - a Reference Implementation
	Space System Example

	COB Representation Requirements to Enable Next-Generation CE

	Summary
	References
	Appendix A - Satellite System Example: FireSat

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

