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Abstract  The two-point exponential approximation method
was introduced by Fadel et al. (1990) and tested on structural op-
timization problems with stress and displacement constraints. It
was subsequently tested on problems with frequency constraints
(Sareen et al. 1991). The results reported in earlier papers showed
reductions in the number of iterations needed to reach an opti-
mum, and a smoother convergence towards that optimum. The
method, which consists in correcting Taylor series approximations
using previous design history, is used in the present paper to au-
tomatically determine move-limits. Move-limits are the allowable
changes in design variables during the optimization of the approx-
imate problem. The exponents, computed in the two-point ex-
ponential approximation by matching slopes between two design
iterations, are used as a measure of non-linearity of the objec-
tive function and constraints with respect to each of the design
variables. The relationships between the move-limits and the ex-
ponents are established and individual move-limits are computed
and applied to each design variable. The method is applied to
two classical structural optimization examples. It provides the
engineer with more flexibility when choosing the move-limits and
typically converges in less iterations.

1 Introduction

In the practice of optimization, especially when complex
structural, thermal, aerodynamic or other analyses are
needed, the computer time required to perform the analy-
ses is critical. Most large optimization problems have been
formulated such that the number of full scale analyses are
minimal. Thisis generally accomplished by reducing the orig-
inal problem to an approximate, simpler model which can be
optimized within certain additional constraints. A full scale
analysis of the original problem is used to obtain initial re-
sults and the sensitivity of the objective and constraints to
the design variables. Using this information, an approximate
problem is formulated, then optimized. The original problem
is then solved again with the design variables obtained from
the optimized approximate problem and the procedure is re-
iterated until overall convergence is attained. The critical
aspect of the procedure is the quality of the approximation.
For a very highly non-linear problem, linear approximations
are valid only in a very small domain around the original de-
sign point, whereas in better behaved problems, larger moves
can be accomplished. The trade-off between the quality of
approximations and the number of full scale analyses is what
dictates the overall time needed to reach the optimum (if

at all reachable). The accepted procedure for solving such
problems consists in selecting a design state, setting up the
move-limits, i.e. the acceptable relative change in the de-
sign variables where the approximations are expected to yield
reasonable results, and optimizing the approximate problem.
The process is then reiterated until overall convergence is ob-
tained. Presently, engineers use their experience to decide
on the magnitude of move-limits. The non-linearities of the
functions involved can be assessed, and typically, uniform
move-limits are imposed on all,the design variables. At each
iteration, the progress of the optimization is monitored, and
appropriate changes in move-limits can be imposed. Occa-
sionally, backtracking is needed and the move-limits have to
be reduced.

2 Previous research

There is little evidence of previous research on the subject
of automatic evaluation of move-limits. Bloebaum (1991)
used expert system rules and the “effectiveness coefficient” to
automatically generate individual move-limits. She demon-
strated a reduction in the number of iterations needed to
reach an optimum when using tailored move-limits. Her con-
tention is stated in the following quote: “If certain design
variables can be identified as having the most impact on a
design and therefore requiring more restrictive move-limits,
it would be possible to allow the less critical design variables
more leeway in their associated move-limits.” In order to
assess this impact, Bloebaum used the effectiveness coeffi-
cients which represent the ratio of the slopes of the objective
function and the cumulative constraint with respect to each
design variable. She then evaluated the mean effectiveness
coefficient, and the standard deviation of the individual co-
efficients from the mean was used to define maximum and
minimum move-limits. Design variables with effectiveness
coefficients falling between the upper and lower values were
assigned move-limits based on a linear distribution between
the bounds. Expert system rules were then used to either
restrict or increase the move-limits based on heuristic rules
involving the status of the constraints (violated, active, not
active).

In this paper, we propose to use the information gained
during the construction of the approximations to better un-
derstand the behaviour of the individual functions, and to
automatically assess the magnitude of the move-limits.
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3 Derivation of the two-point exponential approxi-
mation

Several traditional first-order approximation methods were
summarized in a paper by Fadel et al. (1990), ranging from
the simple Taylor series in the form

3(X) = o(Xo) + Y51~ 7io) 52

to the reciprocal, hybrid, and higher-order approximations.
Fadel then introduced the two-point exponential approxima-
tion which is an extension of the simpler Taylor series, ad-
justed by matching the derivatives at the previous design
point. This correction term is incorporated into an exponent
which is computed after each full analysis for each constraint,
and with respect to each design variable. The exponent acts
as a measure of goodness of fit. If the linear approxima-
tion is valid for a certain constraint, the exponent is equal
to 1, if the reciprocal approximation is more appropriate, the
exponent approaches or is equal to -1. In other cases, the
exponent varies between -1 and 1, correcting, and improving
the approximation. The upper and lower limits for the ex-
ponent have been imposed to control the impact of a design
variable on a particular constraint. The exponents are actu-
ally computed and stored, but during the evaluation of the
approximation, the appropriate limits are imposed. These
limits, although conservative, have been determined by nu-
merical experimentation (Fadel et al. 1990).

The two-point exponential approximation is derived as
mentioned earlier by matching the slopes at previous design
points. Initially, one substitutes z?i for z in the Taylor series
§(X7) = (X) + (P - o),

and after resubstitution, one can write

§(X) = 9(Xg) + T [(T)p - }] (2) 2w,

with the exponent evaluated according to
3 3
log [ 22 (x1)] - log [ £ (Xo)]

log(z1) — log(2z0)

The point X7 refers to the design point at the previous it-
eration and X refers to the current design point from where
the approximation is carried out. Note that at the first it-
eration, since no previous design history exists, a linear or
reciprocal step is carried out, depending on the preference of
the user.

What can one learn from this approximation? An ex-
ponent P is computed for each function (objective and con-
straints) and with respect to each design variable. Essen-
tially, a matrix of exponents is computed

;=

P11 P12 P13 --- Pln
P21 p22 P23 -+ P2n
Pml1 Pm2 Pm3 --- Pmn

In this case, we have n design variables and m functions
(constraints + objective). This is the same number of un-
knowns as the first-order derivatives. However, the addi-
tional information gathered includes some measure of cur-
vature since the exponent in effect introduces a change of
coordinate system (look also at the expression for P which is

similar in form to the second-order derivative). Basically, in-
stead of a linear approximation of the function with respect to
the original variables, a linear approximation of the function
with respect to the original variables raised to some exponent
is built. This will not include cross terms like in the case of a
second-order approximation, but it will result in a better lin-
ear approximation without the additional cost of computing
the Hessian. We suggest therefore to use this information to
estimate the range of validity of the new approximation.

4 Derivation of move-limits

In the process of optimizing, move-limits are imposed on the
design variables. Whether these limits are uniformly im-
posed, or individually selected, the move-limits apply to the
design variables and not to the functions (this could be done
on dual problems). Some functions are, however, better be-
haved than others, and the move-limits have to be conserva-
tively established so that the safest relative changes will not
result in the optimizer being driven deep into the unfeasible
space. Thus, most non-linear functions have to determine the
magnitude of the move-limits.

Two cases have to be considered. First, if the exponents
relative to one design variable (a column in the exponent
matrix) are all within the range (-1 to +1), then the approx-
imations with respect to that particular variable try to fit
as accurately as possible the real functions. In such a case,
the maximum move-limit should be allowed for this design
variable.

Second, if one of the exponents is outside the conserva-
tive limits, then the move-limit has to be restricted in some
inversely proportional way to the value of the exponent. The
reason for this choice will be demonstrated below, but intu-
itively, the higher the exponent, the more non-linear is the
functioh, and the tighter the move-limits should be. Also,
whether the computed exponent is larger than 1 or smaller
than -1, the restrictions could be different.

In order to quantify the magnitude of the move-limits,
the case where the computed exponent is larger than 1 was
considered first. In this case, a certain error is introduced
by using a maximum exponent of +1 instead of the com-
puted value. If gp(z) is the value obtained with the exponent
p, and gq(z) is the value of the function computed with an
exponent of 1, then the two approximations (considering a
single variable) are

z\?
s [(2) - 22
and
91(2) = o(z0) + (= = 20) 2.
Assuming a relative change of A% in the design variable
z =1y + Azg,

the error in the approximations can be obtained by subtract-
ing the following two expressions:

[(1+ AP -1 g
]: ——————— — ——
Ag(r [ p A Ioaz,
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This results in a relationship between the exponent and
the magnitude of the relative increase in the design variable.
This relationship shows that for an acceptable error in the
approximation Ag, depending on the location of the design
variable (larger or smaller than 1), and on the sensitivity
information (derivative of the function with respect to the
design variable), one can construct a curve that illustrates the
change in relative increase of the variable (A4) with respect
to the exponent p. This in effect is the relationship between
the move-limit and the computed exponent.

Using Mathematica, the relationship between A and p for
various values of the “error term” W; is displayed (Fig. 1.).
The curves represent the decrease of the move-limit which
is necessary to maintain a constant error as the calculated
exponent grows from 1 to 10. The different curves represent
different values of the allowable error which increases as the
curves move away from the origin.

1
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Fig. 1. Relationship between move-limit and exponent when p > 1

The same derivation can be performed for the negative
exponent. In this case, the function gy is given by

71(2) = o(e0) + (2 = 20) 2L,

and the error term becomes:

1+AP -1 A Og
Ag(r):[( p) TA+1) %%
or
Ag(z:)=W=(1+A)p—1_ A
dg 2 p A+1
20&-

The contour graph of this function is illustrated in Fig. 2,
and shows that the move-limit should be decreased as the
exponent decreases below -1.

As mentioned earlier, the multiplicity of curves is due
to the selection of the term Ag(z)/[zq (8g/8z)]. This term
could be accurately computed since all the information is
available, however, this would add an undue computational
burden. The calculation would have to be carried out for
each exponent and with respect to each design variable. The
resulting moves would then have to be compared and the
smallest one selected.

0.1
-0 9 -8 7 6 -5 4 -3 -2 -1
. Exponent P
Fig. 2. Relationship between move-limit and exponent when p <
-1

To avoid this computational burden, the method pre-
sented here approximates the behaviour of the function relat-
ing the move-limit to the exponent. The highest or smallest
exponent in a column (for a specific variable) is evaluated
and the move-limit is computed once for each exponent. The
method consists then in selecting the move-limit for each de-
sign variable according to the function described in Fig. 3.
The two sides of the “mesa” are exponentially decreasing
functions which are derived by interpolation techniques from
the families of contour plots illustrated in Figs. 1 and 2. Since
the smallest error is desired, the lowest curve is selected for
the proof of concept.

Relative Change
\
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P - -Maximum Move=limit - - - - .|
) Minimum Move-=limit . . - . _
0
-02
-10 {0]

0
Exponent P
Fig. 3. “Mesa” function relating move-limits to exponents

Additionally, to provide the engineer with flexibility and
control over the process, maximum and minimum move-limits
are asked for once at the start of the optimization cycle. This
provides the user with a certain level of control since the type
of problem often dictates the non-linearity of the problem.
These hmuts are used within the algorithm to compute in-
dividual move- limits at each iteration and for each design
variable. The “mesa” illustrates relative move-limits which
are bounded by the minimum and maximum move-limits pro-
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vided by the user. If all the exponents fall within the +1, -1
range, then the maximum allowable move is the maximum
move specified by the user. Otherwise, the magnitude of the
smallest or largest exponent is used to compute the actual
move which can range from the maximum to the minimum
allowable limits and decreases exponentially on both sides of
the range.

5 Numerical applications

Several test cases were used to test the methodology. The
finite element program STAP (Bathe and Wilson 1976) was
connected to the optimizer program CONMIN (Vanderplaats
1973) and used in the study. In all test cases, we compared
the results with those of published literature and used a ter-
mination criterion set at 0.001.

The first test presented in this paper is the standard ten-
bar truss problem with 10 design variables and 10 stress con-
straints (Haug and Arora 1979) (Fig. 4). The design data for
the problem are £ = 10% ksi, R=0.1 lb/in3, minimum cross-
sectional areas = (.1 in2, initial value of cross-sectional areas
= 10 in?, stress limit = 25 ksi and one loading condition:
-100 Ibs at nodes 2 and 4 in the y direction.
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Fig. 4. Ten-bar truss example

The numbers of iterations needed for convergence are
illustrated in Table 1. The variable move-limit strategy
“mesa” is compared with the traditional fixed move-limit
method. Several values for the maximum move-limits are
tested and reported. Note that the results match published
results, and that both fixed move-limits and variable move-
limits converge to essentially the same values (Table 2).

Table 1. Results of the ten-bar truss example
Fixed move-limits | 10% | 25% | 50% | 75% | 99% |
Number of iterations | 36 ’ 20 17 13 21

Variable move-limits 75% - 10% | 99% - 10%

Maxmv - Minmv

Number of iterations 11 14

The variable move-limit method in this case effectively
reduces the number of iterations required to reach the op-
timum. When the fixed move-limits are very tight, the op-

timizer requires an excessive number of iterations to finally
converge on the optimum. The question becomes: how can
one select the appropriate move-limit that will result in the
least amount of iterations. The variable move-limit gives the
engineer more latitude in the selection of the maximum move-
limit and typically converges faster. In all variable move-limit
cases studied, the minimum move-limit was set at 10%. Ob-
viously, the minimum does play a role in the number of itera-
tions required, and research to quantify this effect is currently
pursued.

The next example is a twenty five-bar transmission tower
with stress and displacement constraints. The tower example
is taken from the book by Haug and Arora (1979) and is
illustrated in Fig. 5.

!
Fig. 5. 25-bar transmission tower (Haug and Arora 1979)

The problem consists of 7 design variables (due to symme-
try) and 62 constraints. Fifty of these are stress constraints
in compression and extension, and 12 are displacement con-
straints. The design data for this problem are £ = 104 ksi,
R = 0.1 Ib/in3, minimum cross-sectional areas = 0.01 in2,
initial value of cross-sectional areas = 5 in2, stress limit =
40 ksi, displacement constraints 0.35 in all directions (nodes
3 and 4) and two loading conditions illustrated in Table 3.

The numbers of iterations needed for convergence for this
case are illustrated in Table 4. Again, the results compare
very closely to published data (Table 3).

The 10% fixed move-limits case converges to a value some-
what higher than the correct result, which means that we
should tighten the error to converge on the correct result.
The number of iterations would then be very large.

The main observations from these results are the following:

* The variable move-limit methodology contributes to the
reduction in the number of iterations required to reach
the optimum.

* Because of its self correcting process, the method seems
to allow more leeway in selecting the move-limits. In the
case of the fixed move-limits procedure, the optimizer was
not able to converge in a reasonable number of iterations
(less than 100) if the move-limit was set at more than 25%.



Table 2. Comparison of results for 10-bar truss problem

Member No. |Reference (in?) area|Results (in%) area
1 7.9379 7.9396
2 0.1 0.1
3 8.0621 . 8.0652
4 3.9389 3.9379
5 0.1 0.1
6 0.1 0.1
7 5.7447 5.7462
8 5.569 5.5696
9 5.569 5.5712
10 0.1 0.1
Optimal volume 15931.8 15935.75
(in®)
Table 3. Loading conditions for 25-bar truss problem
Loading | Node | Direction z | Direction y | Direction z
conditions (in kips) (in kips) (in kips)
1 1 0.5 0.0 0.0
2 0.5 0.0 0.0
3 1.0 10.0 -5.0
4 0.0 10.0 -5.0
2 2 0.0 -100.0 -5.0
4 0.0 -100.0 -5.0

Table 4. Results of the 25-bar transmission tower example

Fixed move-limits 10% 25% 35%

Number of iterations 35 45 No convergence

Variable move-limits|{25% - 10%35% - 10%] 40% - 10%

Number of iterations 24 20 No convergence

Table 5. Comparison of results for 25-bar truss problem

Member No. |Reference (in”) area |Results (in%) area

1 0.01 0.01
2,3,4,5 2.0476 1.9581
6,7,8,9 2.9965 2.8273

10,11,12,13 0.01 0.01

14,15,16,17 0.6853 0.7069
18,19,20,21 1.6217 1.7919
22,23,24,25 2.6712 2.6426

Optimal volume 5450.4 5455.1

(in%)

The variable move-limits procedure expanded this range
to 35% maximum move. Even if we had selected the 25%
maximum move that was used in the fixed move-limit
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case, the new method required less iterations to reach the

optimum.

The method was tested on two additional truss problems
with stress and displacement and stress constaints and per-
formed according to expectations. It is presently being tested
on other optimization problems, specifically plate problems
with aerodynamic and vibrational constraints.

6 Conclusion

This paper presents a method to evaluate move-limits au-
tomatically during the optimization process. It depends on
the exponents that are computed for the two-point exponen-
tial approximation. These exponents are a measure of non-
linearity and can be correlated to the individual move-limits
of each design variable. The method is implemented and
tested on several standard structural optimization cases with
stress and displacement constraints. The results obtained
show that the method often reduces the number of iterations
required to reach the optimum. The method still relies on the
engineer to set the maximum and minimum allowable move-
limits which are usually derived from experience and problem
type. It then tightens the move limits or relaxes them based
on the non-linearity of the functions. The method is also
shown to occasionally allow the engineer more latitude in se-
lecting the maximum move allowable.

References

Bathe, K.J.; Wilson, E.L. 1976: Numerical methods in finite ele-
ments. Englewood Cliffs: Prentice Hall

Bloebaum, C. 1991: Formal and heuristic system decomposition
methods in multidisciplinary synthesis. NASA CR-4413

i -
Fadel, G.M.; Riley, M.F.; Barthelemy, J.F.M. 1990: Two point
exponential approximation method for structural optimization.
Struct. Optim. 2, 117-124

Haug, E.J.; Arora, J.S. 1979: Applied optimal design - mechanical
and structural systems. New York: Wiley InterScience

Pritchard, J.I.; Adelman, H.M. 1990: Differential equation based
method for accurate approximations in optimization. NASA TM-
102639, AVSCOM Technical Memorandum 90- B-006

Sareen, A.K.; Fadel, G.M.; Shrage, D.P. 1991: Application of a
two point exponential approximation method in optimizing ro-
torcraft airframe structures. Proc. American Helicopter Society,
Specialists meeting on Rotorcraft structures (held at NASA, Lan-
gley)

Swanson Analysis Systems Inc. 1990: ANSYS, engineering anal-
ysis system. User’s Manual. Vols. I and II

Vanderplaats, G.N. 1973: CONMIN, a Fortran program for con-
strained function minimization. User’s Manual. NASA TM-X-62,
2582



