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Abstract

This document overviews X-analysis integration (XAI) technology and example applications. It serves as a
guide to recent research and development in this arena carried out by EIS Lab. References to in-depth
descriptions of the underlying concepts and applications are included in an annotated bibliography.

1 Motivation

Linking design and analysis models is profoundly different than typical data integration tasks in that it
requires multidirectional heterogeneous transformations - transforming one or more types of information
(e.g., design geometry and materials) into a different type of information (e.g., an idealized finite element
model) and vice-versa. Today such idealization transformations are usually not articulated in any form,
much less captured as computable CAD-CAE associativity (Figure 4a), thus seriously limiting automation
and knowledge capture. The integration challenge is further complicated in that a given type of product can
have numerous types of analysis models that vary in discipline, resolution, application, and fidelity [Peak
1993; Peak et al. 1998]. We believe this diversity makes the gap between design and analysis too large for
a single span integration bridge.

2 Technical Approach

2.1 MRA Conceptual Architecture

The multi-representation architecture (MRA) has been developed with intermediate representations as
stepping stones to achieve the flexibility and modularity dictated by the above simulation-based engineering
(SBE) needs (Figure 1). It is particularly aimed at capturing reusable analysis knowledge at the preliminary
and detailed design stages.

In the MRA conceptual architecture, solution method models (SMMs) are object-oriented wrappers around
detailed solution tools that obtain analysis results in a highly automated manner. They support white box
reuse of existing tools (e.g., FEA tools and in-house codes) within an integrated framework (Figure 5,
Figure 8). Analysis building blocks (ABBs) represent analytical engineering concepts as semantically rich
objects independent of solution method and product domain. ABBs generate SMMs based on solution
technique-specific considerations such as symmetry and mesh density. Analyzable product models (APMs)
represent design-oriented details, providing a common stepping stone to multiple design tools and
supporting multi-fidelity analysis idealizations [Tamburini, 1999]. Finally, context-based analysis models
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(CBAMs) explicitly represent the fine-grained associativity between a design model and its diverse analysis
models (i.e., between ABBs and APMs). CBAMs are also known as analysis modules and analysis
templates.

Figure 1 illustrates these concepts via a solder joint analysis example [Peak et al. 1998]. Due to the
coefficient of thermal expansion mismatch between the printing wiring board (PWB) and component, the
solder joint deforms under thermal loads. The goal of this analysis model is to compute the resulting strain
in order to estimate solder joint fatigue life. The left side shows design-related details of APM entities: the
cross-section of a component, a PWB, solder joints, and epoxy. The assembly of these entities is another
APM entity, a PWA component occurrence, .. On the right, the ABB is a generic analysis system, Plane
Strain Bodies System, that can be used in analyses for multiple types of products.

The CBAM, Solder Joint Plane Strain Model, contains associativity linkages, ®;, which indicate

how the APM design entities are idealized as homogeneous plane strain bodies in the ABB. For example,
linkage @ explicitly specifies that the height of ABB body,, h;, equals the total height of the component, 4,

(a geometric idealization, I';, of the detailed APM component entity). Linkage @, similarly specifies the
material model for body;. While the top figure shows this design-analysis associativity informally, the

lower one is a constraint schematic - a structured information model that specifies all associativity linkages.
As COBs, these such product-specific analysis models also have underlying lexical forms.

2.2 Constrained Objects (COBs)

Object and constraint graph techniques are combined in a new knowledge representation termed constrained
objects (COBs) to represent ABBs, APMs, and CBAMs [Wilson, 2000]. COBs have the following
capabilities:

e  Various information modeling forms: computable lexical forms (including STEP EXPRESS) and
human-interpretable graphical forms (Figure 2)
Object constructs: sub/supertypes, inheritance, basic aggregates, and multi-fidelity objects
Multi-directionality (I/O changes)
Wrapping external programs as white box relations
Adaptability, reusability, modularity, and semantics richness.
COB multi-directionality is particularly important to aid design synthesis (sizing) and design verification
(analysis) within the same analysis module.

2.3 Methodology

The MRA routinization process (Figure 1) is a knowledge capture technique for transforming physical
behavior research and design standards into catalogs of ready-to-use analysis modules [Peak ef al. 1999a].
Working with designers, analysts identify commonly needed analyses and implement them as CBAM
templates. Routine analysis then involves the regular usage of module instances to support product design.

3 Toolkit Implementation

™

XaiTools Framework™ is a second-generation Java-based prototype toolkit that implements MRA X-
analysis integration concepts (Figure 1). It is targeted at design-analysis integration (Figure 3 and Figure 4)
in CAD/CAE environments with high diversity (e.g., diversity of parts, analysis discipline, analysis
idealization fidelity, design tools, and analysis tools) and where explicit design-analysis associativity is
important (e.g., for automation, knowledge capture, and auditing).

The current tool architecture (Figure 5) supports:
e Integration with representative CORBA-based analysis tools: FEA (Ansys) and general math
(Mathematica)
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e Integration with representative design tools: mechanical CAD (CATIA), electrical CAD (via STEP
AP210 DIS WD1.7), custom tools, and libraries (e.g., materials and fasteners)

e COB-based analysis module libraries

e Basic COB authoring tools

e  Multi-directional constraint solver: COB-based wrapper for Mathematica

4 Applications & Benefits

Example industrial applications include PWA-B thermomechanical analysis, electronic packaging thermal
resistance analysis, and aerospace structural analysis (Figure 3, Figure 4, Figure 6) [Peak et al. 1997, 1999c,
2000a]. Product-specific applications such as XaiTools PWA-B™ and XaiTools ChipPackage™ have been
built upon this general-purpose foundation. In a nutshell product-specific CBAMs and product model
entities (APMs) are added as COB subclasses. Related techniques [Koo, 2000; Zhou et al. 1997]
intelligently leverage product model knowledge to mesh and combine building blocks into complex finite
element models - models that are often impractical with brute force automeshing (Figure 4).

Distinctive benefits include greater than 10:1 reduction in analysis modeling time, highly automated
parametric FEA, self-serve analysis for supply chains at Internet-based engineering service bureaus (ESBs)
(Figure 7, Figure 8) [Scholand et al. 1999], capture of multi-fidelity multi-directional reusable analysis
knowledge, and standards-based product data-driven analysis. Overall the MRA approach has divided the
CAD-CAE gulf into natural object-oriented packages coupled with explicit associativity to fundamentally
address the integration issues identified above.

5 Further Research

Current research includes MRA-based optimization [Cimtalay, 2000], simulation-based manufacturing

[Scholand, 2000], generalized product data-driven finite element meshing, and advanced geometric

idealization associativity. Other research directions include:

e Advanced constrained object constructs (e.g., higher order constraints, subgraph buffering, general
aggregate relations, and time domain attributes)

e  Multi-level inter-analysis associativity and related conditions and loads that originate from product
requirements

e Techniques and tools for interactively constructing and using COBs in multi-user environments

e Automated pullable views combining documentation languages like XML and COB techniques (e.g., to
show results summaries)
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(Aug 23, 1999c) Product Data-Driven Analysis in a Missile Supply Chain (ProAM) Final Report, Georgia Tech
Engineering Information Systems Lab Technical Report E-15-642-D05, Concurrent Technologies Corp Contract
N00140-96-D-1818/0008 for US DoD JECPO.
Describes tools and techniques developed in the ProAM project. Techniques cover general analysis integration
and Internet-based engineering service bureau (ESB) concepts. PWA/B applications include the XaiTools™ toolkit
and U-Engineer.com.

R. S. Peak, R. E. Fulton, A. Chandrasekhar, S. Cimtalay, M. A. Hale, D. Koo, L. Ma, A. J. Scholand, D. R.
Tamburini, M. W. Wilson (Feb. 2, 1999b) Design-Analysis Associativity Technology for PSI, Phase I
Report: Pilot Demonstration of STEP-based Stress Templates Georgia Tech Project E15-647, The Boeing
Company Contract W309702.

Overviews MRA applications relevant to integration of aerospace structural analysis. Includes CBAM concepts,
APM links to CATIA CAD models, and XaiTools usage of Mathematica as a COB-based constraint solver.
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X-Analysis Integration Technology

Peak, R. S.; Fulton, R. E.; Sitaraman, S. K. (1997) Thermomechanical CAD/CAE Integration in the TIGER
PWA Toolset. InterPACK'97, Kohala Coast, Hawaii.
Shows how MRA techniques were applied in the DARPA-sponsored TIGER Program. Includes PWA and PWB
thermomechanical analyses driven by STEP AP210 product models that originated in the Mentor Graphics
BoardStation layout tool.
Peak, R. S.; Fulton, R. E. (1993b) Automating Routine Analysis in Electronic Packaging Using Product
Model-Based Analytical Models (PBAMs), Part II: Solder Joint Fatigue Case Studies. Paper 93-WA/EEP-

24, ASME Winter Annual Meeting, New Orleans.
Condensed version of solder joint analysis case studies in [Peak, 1993]. Illustrates automated routine analysis,
mixed formula-based and FEA-based analysis models, multidirectional analysis, and capabilities of constraint
schematic notation.

Tools

XaiTools Users Guide (1999)
XaiTools™ is Java-based toolkit for X-analysis integration based on the MRA. This document gives basic usage
instructions. Other documents describing the general architecture, examples, tutorials, COB creation guidelines,
and developer guidelines are planned. See the XaiTools home page at http://eislab.gatech.edu/tools/XaiTools/

XaiTools Installation and Configuration Guide (1999)

XaiTools PWA-B Users Guide (1999)
XaiTools PWA-B™ provides a PWB layup design tool and PWB warpage analysis modules to help designers and
fabricators automate tedious tasks and compare design alternatives. Built upon the general-purpose XaiTools
foundation, it can be configured as a thick client to take advantage of Internet-based analysis solvers.

XaiTools ChipPackage Users Guide (expected 2000)

U-Engineer.com (1999)
An Internet-based engineering service bureau with self-serve analysis modules for PWA designers and PWB
fabricators.
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